HyConvE: A Novel Embedding Model for Knowledge Hypergraph Link Prediction with Convolutional Neural Networks

嵌入 超图 计算机科学 链接(几何体) 卷积神经网络 关系(数据库) 理论计算机科学 卷积(计算机科学) 图形 知识图 人工智能 人工神经网络 数据挖掘 数学 离散数学 计算机网络
作者
Chenxu Wang,Xin Wang,Zhao Li,Zirui Chen,Jianxin Li
标识
DOI:10.1145/3543507.3583256
摘要

Knowledge hypergraph embedding, which projects entities and n-ary relations into a low-dimensional continuous vector space to predict missing links, remains a challenging area to be explored despite the ubiquity of n-ary relational facts in the real world. Currently, knowledge hypergraph link prediction methods are essentially simple extensions of those used in knowledge graphs, where n-ary relational facts are decomposed into different subelements. Convolutional neural networks have been shown to have remarkable information extraction capabilities in previous work on knowledge graph link prediction. In this paper, we propose a novel embedding-based knowledge hypergraph link prediction model named HyConvE, which exploits the powerful learning ability of convolutional neural networks for effective link prediction. Specifically, we employ 3D convolution to capture the deep interactions of entities and relations to efficiently extract explicit and implicit knowledge in each n-ary relational fact without compromising its translation property. In addition, appropriate relation and position-aware filters are utilized sequentially to perform two-dimensional convolution operations to capture the intrinsic patterns and position information in each n-ary relation, respectively. Extensive experimental results on real datasets of knowledge hypergraphs and knowledge graphs demonstrate the superior performance of HyConvE compared with state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
znsmaqwdy完成签到,获得积分20
刚刚
刚刚
1秒前
Aura完成签到,获得积分10
1秒前
yys完成签到,获得积分10
2秒前
yys10l完成签到,获得积分10
3秒前
彭于晏应助ddd采纳,获得10
3秒前
3秒前
轻松的兔子完成签到,获得积分10
4秒前
4秒前
了0完成签到 ,获得积分10
4秒前
苏氨酸应助小郭采纳,获得10
4秒前
4秒前
Emma发布了新的文献求助10
5秒前
huishi105发布了新的文献求助10
6秒前
6秒前
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
收拾收拾应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
916应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
yar应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
收拾收拾应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
坦率耳机应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得20
9秒前
916应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650