An interpretable machine learning approach to estimate the influence of inflammation biomarkers on cardiovascular risk assessment

可解释性 机器学习 医学 计算机科学 人工智能 急性冠脉综合征 威尔科克森符号秩检验 医疗保健 背景(考古学) 心肌梗塞 曼惠特尼U检验 内科学 经济增长 生物 古生物学 经济
作者
M. Roseiro,J. Henriques,S. Paredes,Teresa Rocha,José Pedro Sousa
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:230: 107347-107347 被引量:14
标识
DOI:10.1016/j.cmpb.2023.107347
摘要

Cardiovascular disease has a huge impact on health care services, originating unsustainable costs at clinical, social, and economic levels. In this context, patients' risk stratification tools are central to support clinical decisions contributing to the implementation of effective preventive health care. Although useful, these tools present some limitations, in particular, some lack of performance as well as the impossibility to consider new risk factors potentially important in the prognosis of severe cardiac events. Moreover, the actual use of these tools in the daily practice requires the physicians' trust. The main goal of this work addresses these two issues: (i) evaluate the importance of inflammation biomarkers when combined with a risk assessment tool; (ii) incorporation of personalization and interpretability as key elements of that assessment.Firstly, machine learning based models were created to assess the potential of the inflammation biomarkers applied in secondary prevention, namely in the prediction of the six month risk of death/myocardial infarction. Then, an approach based on three main phases was created: (i) set of interpretable rules supported by clinical evidence; (ii) selection based on a machine learning classifier able to identify for a given patient the most suitable subset of rules; (iii) an ensemble scheme combining the previous subset of rules in the estimation of the patient cardiovascular risk. All the results were statistically validated (t-test, Wilcoxon-signed rank test) according to a previous verification of data normality (Shapiro-Wilk).The proposed methodology was applied to a real acute coronary syndrome patients dataset (N = 1544) from the Cardiology Unit of Coimbra Hospital and Universitary centre. The first assessment was based on the GRACE tool and a Random Forest classifier, the incorporation of inflammation biomarkers achieved SE=0.83; SP=0.84 whereas the original GRACE risk factors reached SE=0.75; SP=0.85. In the second phase, the proposed approach with inflammation biomarkers achieved SE=0.763 and SP=0.778.This approach confirms the potential of combining inflammation markers with the GRACE score, increasing SE and SP, when compared with the original GRACE. Additionally, it assures interpretability and personalization, which are critical issues to allow its application in the daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助quanjia采纳,获得10
1秒前
2秒前
cy发布了新的文献求助10
2秒前
研友_nvGN1Z完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
布丁发布了新的文献求助10
4秒前
7秒前
9秒前
小任发布了新的文献求助10
10秒前
威武冷雪完成签到,获得积分10
10秒前
11秒前
布丁完成签到,获得积分20
12秒前
Gen_cexon关注了科研通微信公众号
12秒前
希望天下0贩的0应助开心采纳,获得10
12秒前
张晓晓发布了新的文献求助10
14秒前
七海Nana7mi发布了新的文献求助10
17秒前
yinlu完成签到 ,获得积分10
18秒前
19秒前
19秒前
bella完成签到,获得积分10
20秒前
笨笨小刺猬完成签到,获得积分10
21秒前
22秒前
刘维尼发布了新的文献求助10
24秒前
未曾提起发布了新的文献求助10
24秒前
七海Nana7mi完成签到,获得积分20
25秒前
xi发布了新的文献求助10
27秒前
丘比特应助Gen_cexon采纳,获得10
27秒前
到底是谁还在做牛马完成签到 ,获得积分10
29秒前
脾气暴躁的小兔完成签到,获得积分10
30秒前
eric完成签到 ,获得积分0
30秒前
清禾kat完成签到,获得积分10
31秒前
31秒前
雪山飞龙发布了新的文献求助50
32秒前
耶格尔完成签到 ,获得积分10
32秒前
善学以致用应助mdeguisu采纳,获得10
33秒前
34秒前
东方欲晓完成签到 ,获得积分0
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023