催化作用
限制电流
限制
大规模运输
功率密度
电极
电解质
纳米颗粒
化学工程
聚合物
材料科学
纳米技术
化学
燃料电池
电化学
功率(物理)
有机化学
工程物理
工程类
复合材料
物理化学
物理
机械工程
量子力学
作者
Qing Gong,Hong Zhang,Haoran Yu,Sungho Jeon,Yang Ren,Zhenzhen Yang,Chengjun Sun,Eric A. Stach,Alexandre C. Foucher,Yikang Yu,Matthew Smart,Gabriel M. Filippelli,David A. Cullen,Ping Liu,Jian Xie
出处
期刊:Matter
[Elsevier]
日期:2023-03-01
卷期号:6 (3): 963-982
被引量:5
标识
DOI:10.1016/j.matt.2022.12.011
摘要
Because of the poor accessibility of embedded active sites, platinum (Pt)-based electrocatalysts suffer from insufficient Pt utilization and mass transport in membrane electrode assemblies (MEAs), limiting their performance in polymer electrolyte membrane fuel cells. Here, we report a simple and universal approach to depositing sub-3-nm L10-PtM nanoparticles over external surfaces of carbon supports through pore-tailored amino (NH2)-modification, which enables not only excellent activity for the oxygen reduction reaction, but also enhanced Pt utilization and mass transport in MEAs. Using a low loading of 0.10 mgPt·cm−2, the MEA of PtCo/KB-NH2 delivered an excellent mass activity of 0.691 A·mgPt−1, a record-high power density of 0.96 W·cm−2 at 0.67 V, and only a 30-mV drop at 0.80 A·cm−2 after 30,000 voltage cycles, which meets nearly all targets set by the Department of Energy. This work provides an efficient strategy for designing advanced Pt-based electrocatalysts and realizing high-power fuel cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI