Decoding throat-language using flexibility sensors with machine learning

解码方法 支持向量机 计算机科学 振动 模式识别(心理学) 语音识别 喉部 人工智能 计算机视觉 声学 电信 医学 解剖 物理
作者
Hairui Fang,Shiqi Li,Dong Wang,Zhiyu Bao,Yifei Xu,Wenjuan Jiang,Jin Deng,Ke Lin,Zimeng Xiao,Xinyu Li,Ye Zhang
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:352: 114192-114192 被引量:4
标识
DOI:10.1016/j.sna.2023.114192
摘要

Throat vibration signals contain potential information for communication. However, there is little systematic research on throat vibration signals at present. Here, we propose a novel throat-language decoding system (TLDS) for capturing signals of throat vibration aided by flexible, low-cost and self-powered sensors and semantic analysis with a machine learning classifier. A polyvinylidene fluoride (PVDF) flexible piezoelectric sensor was prepared to collect the throat vibration signals. The sensor has a safe human skin fit, high softness, excellent response repeatability, outstanding linear sensitivity, and long-term durability. After denoised, the time-frequency dynamics features and nonlinear dynamics features of the throat vibration signals were extracted, and the Grid Search-Support Vector Machine (GS-SVM) was applied to recognize the features. TLDS has achieved satisfactory results in a series of tasks, including letters recognition, speaker recognition, and semantic recognition. The average accuracy of single-person letters recognition was 90.55%, even with multi-person, the accuracy rate was still up to 87.26%. Besides, the accuracy of speaker recognition and simple semantic recognition were 95.97%, and 97.50%, respectively. Our work provides a promising approach that can provide unparalleled value in helping people who cannot speak to live a convenient life with accessible communications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重乌龟完成签到,获得积分10
刚刚
脑洞疼应助1111采纳,获得30
刚刚
Monicamo发布了新的文献求助70
2秒前
2秒前
含蓄的明雪应助kiki采纳,获得10
2秒前
3秒前
Brocade完成签到,获得积分10
4秒前
阵痛完成签到 ,获得积分10
4秒前
Aisha完成签到,获得积分10
5秒前
5秒前
深情的鞯完成签到,获得积分10
6秒前
sally完成签到 ,获得积分10
7秒前
7秒前
烟花应助莫西莫西采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
星辰完成签到,获得积分20
9秒前
10秒前
12秒前
呆萌安卉完成签到 ,获得积分10
13秒前
15秒前
15秒前
锂sdsa完成签到,获得积分20
15秒前
wanci应助健康的绮晴采纳,获得10
15秒前
兴奋代芙发布了新的文献求助10
16秒前
16秒前
16秒前
乐乐应助kleinlme采纳,获得10
16秒前
两只鱼完成签到,获得积分10
17秒前
19秒前
snowpie完成签到 ,获得积分10
20秒前
拓跋书芹发布了新的文献求助10
20秒前
莫西莫西发布了新的文献求助10
21秒前
wanci应助jackbauer采纳,获得10
21秒前
22秒前
yoyo完成签到,获得积分10
22秒前
kaier完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905