WaveFormer: Wavelet Transformer for Noise-Robust Video Inpainting

修补 变压器 小波 计算机科学 人工智能 计算机视觉 工程类 图像(数学) 电气工程 电压
作者
Zhiliang Wu,Changchang Sun,Hanyu Xuan,Gaowen Liu,Yan Yan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (6): 6180-6188 被引量:5
标识
DOI:10.1609/aaai.v38i6.28435
摘要

Video inpainting aims to fill in the missing regions of the video frames with plausible content. Benefiting from the outstanding long-range modeling capacity, the transformer-based models have achieved unprecedented performance regarding inpainting quality. Essentially, coherent contents from all the frames along both spatial and temporal dimensions are concerned by a patch-wise attention module, and then the missing contents are generated based on the attention-weighted summation. In this way, attention retrieval accuracy has become the main bottleneck to improve the video inpainting performance, where the factors affecting attention calculation should be explored to maximize the advantages of transformer. Towards this end, in this paper, we theoretically certificate that noise is the culprit that entangles the process of attention calculation. Meanwhile, we propose a novel wavelet transformer network with noise robustness for video inpainting, named WaveFormer. Unlike existing transformer-based methods that utilize the whole embeddings to calculate the attention, our WaveFormer first separates the noise existing in the embedding into high-frequency components by introducing the Discrete Wavelet Transform (DWT), and then adopts clean low-frequency components to calculate the attention. In this way, the impact of noise on attention computation can be greatly mitigated and the missing content regarding different frequencies can be generated by sharing the calculated attention. Extensive experiments validate the superior performance of our method over state-of-the-art baselines both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小潘同学完成签到,获得积分10
1秒前
1秒前
科研通AI5应助传统的海露采纳,获得10
2秒前
学术刘亦菲完成签到,获得积分10
2秒前
成就的烧鹅完成签到,获得积分20
2秒前
3秒前
dd发布了新的文献求助10
3秒前
luoshi应助leon采纳,获得30
4秒前
4秒前
wang完成签到,获得积分10
4秒前
可爱的函函应助hu采纳,获得10
4秒前
4秒前
我测你码关注了科研通微信公众号
5秒前
下课了吧发布了新的文献求助10
5秒前
jy发布了新的文献求助10
5秒前
绘梨衣完成签到,获得积分10
6秒前
数据线完成签到,获得积分10
6秒前
完美世界应助甜甜的难敌采纳,获得30
7秒前
满堂花醉三千客完成签到 ,获得积分10
7秒前
7秒前
7秒前
gao完成签到,获得积分10
8秒前
LiuRuizhe完成签到,获得积分10
8秒前
绘梨衣发布了新的文献求助10
8秒前
8秒前
9秒前
淡定紫菱发布了新的文献求助10
10秒前
李繁蕊发布了新的文献求助10
12秒前
万能图书馆应助愉快寄真采纳,获得10
12秒前
Rrr发布了新的文献求助10
12秒前
13秒前
13秒前
高兴藏花发布了新的文献求助10
13秒前
14秒前
顾闭月发布了新的文献求助10
16秒前
励志小薛完成签到,获得积分20
17秒前
doudou完成签到,获得积分10
17秒前
18秒前
Ting完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794