Electrolyte optimization for sodium-sulfur batteries

多硫化物 电解质 硫黄 二甲氧基乙烷 二聚体 碳酸丙烯酯 阴极 聚丙烯腈 锂硫电池 化学工程 化学 材料科学 无机化学 溶剂 聚合物 有机化学 电极 物理化学 工程类
作者
Janak Basel,Nawraj Sapkota,Mihir Parekh,Apparao M. Rao
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:124 (12) 被引量:1
标识
DOI:10.1063/5.0193318
摘要

Due to high theoretical capacity, low cost, and high energy density, sodium-sulfur (Na-S) batteries are attractive for next-generation grid-level storage systems. However, the polysulfide shuttle leads to a rapid capacity loss in sodium-sulfur batteries with elemental sulfur as the cathode material. Most previous studies have focused on nanoengineering methods for creating stable Na anodes and S cathodes. A proven strategy to mitigate the shuttle effect is to covalently bond elemental sulfur to a polymeric backbone and use it as the active ingredient instead of elemental sulfur. In this regard, we synthesized sulfurized polyacrylonitrile (SPAN) cathodes. In addition to the electrodes, electrolyte selection is crucial for sodium sulfur batteries with long cycle life, high energy densities, and rate capabilities. Thus, we explored various electrolyte compositions; specifically organic solvents such as propylene carbonate (PC), dioxolane (DOL), dimethoxyethane, and diglyme (DIG) were mixed in different proportions to create electrolyte solvents with both ethers and carbonates to promote the formation of bilateral solid electrolyte interphase (SEI). This bilateral SEI strategy has been employed to prevent polysulfide shuttle and dendrite growth in lithium-sulfur batteries. Sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) was chosen as the electrolyte salt. The prepared coin cells were tested for rate capability and capacity retention, and the results have been analyzed. High initial discharge capacity of ∼740 mAh g−1 with ∼66% capacity retention over 100 cycles was observed for 0.8M NaTFSI in PC50DOL50 (v/v). The cell with 0.8M NaTFSI in PC50DIG50 has exhibited strong capacity retention of 74.60% with excellent Coulombic efficiency of 99%. Molecular dynamics (MD) simulations were carried out to further understand these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
manan发布了新的文献求助10
刚刚
01259发布了新的文献求助30
刚刚
刚刚
斯文败类应助zyh945采纳,获得10
刚刚
南山无梅落完成签到 ,获得积分10
刚刚
淡定吃吃完成签到,获得积分10
刚刚
科研通AI5应助称心砖头采纳,获得10
1秒前
淡淡从蕾完成签到,获得积分10
1秒前
Ehgnix完成签到,获得积分10
1秒前
嘴嘴是大嘴007完成签到,获得积分10
2秒前
2秒前
但愿完成签到 ,获得积分10
2秒前
犹豫的一斩应助Pangsj采纳,获得10
3秒前
Jenny应助wjs0406采纳,获得10
3秒前
3秒前
酒九发布了新的文献求助10
3秒前
落晨发布了新的文献求助10
4秒前
包容可乐完成签到,获得积分10
4秒前
5秒前
眼睛大的一曲完成签到,获得积分10
5秒前
6秒前
英俊的铭应助wu采纳,获得10
6秒前
认真的飞扬完成签到,获得积分10
6秒前
6秒前
雪白的西牛完成签到,获得积分20
6秒前
芋头完成签到,获得积分10
6秒前
ntxiaohu完成签到,获得积分10
7秒前
四火完成签到,获得积分10
7秒前
7秒前
一裤子灰完成签到,获得积分10
7秒前
SamuelLiu完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8R60d8应助松子采纳,获得10
8秒前
8秒前
我来回收数据完成签到,获得积分10
9秒前
欣忆完成签到 ,获得积分10
9秒前
复原乳完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740