The multidepot vehicle routing problem with intelligent recycling prices and transportation resource sharing

车辆路径问题 粒子群优化 遗传算法 聚类分析 数学优化 资源(消歧) 布线(电子设计自动化) 趋同(经济学) 元启发式 计算机科学 计算机网络 经济 算法 人工智能 机器学习 数学 经济增长
作者
Yong Wang,Siyu Luo,Jianxin Fan,Lu Zhen
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:185: 103503-103503 被引量:52
标识
DOI:10.1016/j.tre.2024.103503
摘要

The increasing focus on environmental regulations and the economic advantages of recycling has spurred interest in the design of multidepot reverse logistics networks (MDRLNs). In these networks, the growing use of intelligent recycling bins (IRBs) has been beneficial for both product recycling and standardizing recycling product pricing. Furthermore, collaboration and resource sharing enhance the efficiency of resource utilization and recycling. This study proposes a multidepot vehicle routing problem with time windows that incorporates intelligent recycling prices (IRPs) and transportation resource sharing (MDVRPTW-IRPTRS). Initially, a linear function is developed to define the relationship between the volume of returned products and IRPs. Subsequently, the problem is expressed as a mathematical model aiming to minimize total operating costs and maximize total recycling profits. Additionally, a hybrid algorithm that combines a three-dimensional (3D) k-means clustering algorithm with a self-adapting genetic algorithm-particle swarm optimization (SGA-PSO) is devised to determine the optimal solution for MDVRPTW-IRPTRS. The 3D k-means clustering algorithm is utilized to categorize IRBs within an MDRLN. The SGA-PSO algorithm incorporates elite preservation and self-adaptive update mechanisms to enhance the solution quality and algorithm convergence. A transportation resource sharing (TRS) strategy is integrated into the SGA-PSO, facilitating the allocation of shared vehicles to alternative recycling routes. A comparative analysis of SGA-PSO against other algorithms, including a hybrid genetic algorithm, an improved particle swarm optimization algorithm, and a hybrid genetic algorithm with variable neighborhood search, demonstrates its superiority in solving the MDVRPTW-IRPTRS. The model and algorithm are applied in a real-world case study in Chongqing, China, and the study discusses the optimized results under varying TRS strategies and IRP schemes, contributing to the development of an efficient and synergistic urban reverse logistics network. Moreover, the superior performance of the proposed approach is validated through the ablation experiments. This study offers valuable decision-making support for fostering an environmentally sustainable and resource-efficient city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫猫叽丫丫完成签到,获得积分10
刚刚
嗯嗯完成签到 ,获得积分10
刚刚
小蘑菇应助樊珩采纳,获得10
1秒前
1秒前
hymmloveGD发布了新的文献求助10
2秒前
李美兰发布了新的文献求助10
3秒前
不起发布了新的文献求助10
3秒前
Apei完成签到,获得积分10
3秒前
BrillSpikes完成签到,获得积分10
4秒前
4秒前
香翔想相完成签到,获得积分10
5秒前
王秋婷发布了新的文献求助10
6秒前
阿航完成签到,获得积分10
8秒前
领导范儿应助樊珩采纳,获得10
9秒前
Assassion完成签到 ,获得积分10
9秒前
简单面包完成签到,获得积分10
10秒前
10秒前
10秒前
今后应助刘梓采纳,获得10
11秒前
nini完成签到,获得积分10
11秒前
明研完成签到,获得积分10
11秒前
12秒前
Jasper应助全佳伟采纳,获得10
12秒前
量子星尘发布了新的文献求助10
14秒前
OmmeHabiba完成签到,获得积分10
15秒前
hymmloveGD发布了新的文献求助10
15秒前
15秒前
zkylh应助明明就采纳,获得10
15秒前
科研通AI6应助mokano采纳,获得10
16秒前
júpiter发布了新的文献求助20
16秒前
Pooh完成签到 ,获得积分10
16秒前
滴滴滴完成签到,获得积分10
16秒前
哈哈王发布了新的文献求助10
17秒前
桐桐应助瀼瀼采纳,获得10
17秒前
Water完成签到 ,获得积分10
17秒前
上官若男应助layla采纳,获得10
18秒前
19秒前
19秒前
xuanjiawu完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282