Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小小柒发布了新的文献求助10
刚刚
刚刚
siqilinwillbephd完成签到,获得积分10
1秒前
超帅的豪英完成签到,获得积分10
1秒前
1秒前
四叶草哦完成签到,获得积分10
2秒前
浮游应助flyfly采纳,获得10
2秒前
黎星完成签到,获得积分10
3秒前
俊鱼完成签到,获得积分10
3秒前
机智的灵萱完成签到,获得积分10
3秒前
longmad完成签到,获得积分10
4秒前
想想完成签到,获得积分10
4秒前
天行马完成签到,获得积分10
5秒前
充电宝应助lawang采纳,获得10
5秒前
科研通AI6应助嘻嘻嘻采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
xavier完成签到,获得积分10
6秒前
HK完成签到 ,获得积分10
6秒前
聒噪的小黄瓜完成签到,获得积分10
7秒前
ZOE应助潇洒台灯采纳,获得50
8秒前
SXYYY完成签到,获得积分10
8秒前
牛马完成签到,获得积分10
9秒前
汪澳完成签到,获得积分10
9秒前
tRNA完成签到,获得积分10
9秒前
小小小柒完成签到,获得积分10
11秒前
山野村夫完成签到,获得积分10
11秒前
纯真芙完成签到,获得积分20
11秒前
沉默的莞完成签到,获得积分10
11秒前
qjq完成签到 ,获得积分10
11秒前
落寞的冰姬完成签到,获得积分10
12秒前
武映易完成签到 ,获得积分10
12秒前
鹤轩完成签到,获得积分10
12秒前
qawsed完成签到,获得积分10
12秒前
无限的千凝完成签到 ,获得积分10
13秒前
whatever完成签到,获得积分0
13秒前
清脆的天空完成签到,获得积分10
14秒前
foyefeng完成签到,获得积分10
15秒前
15秒前
DreamRunner0410完成签到,获得积分10
15秒前
小恐龙飞飞完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651587
求助须知:如何正确求助?哪些是违规求助? 4785291
关于积分的说明 15054465
捐赠科研通 4810222
什么是DOI,文献DOI怎么找? 2573037
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934