亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wave8013完成签到 ,获得积分10
9秒前
11秒前
14秒前
丘比特应助神医magical采纳,获得10
20秒前
ceeray23发布了新的文献求助20
21秒前
烂漫的绿茶完成签到 ,获得积分10
28秒前
打打应助orion采纳,获得10
29秒前
54秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
loii应助科研通管家采纳,获得200
58秒前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
小铭同学完成签到,获得积分10
1分钟前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
1分钟前
orion发布了新的文献求助10
1分钟前
传奇3应助hhhhhh采纳,获得10
1分钟前
科研通AI6应助危机的尔琴采纳,获得10
1分钟前
2分钟前
微卫星不稳定完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
oi完成签到 ,获得积分10
3分钟前
大个应助计划采纳,获得30
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
NINI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
神医magical发布了新的文献求助10
3分钟前
yishang发布了新的文献求助10
3分钟前
3分钟前
愉快的犀牛完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628321
求助须知:如何正确求助?哪些是违规求助? 4716547
关于积分的说明 14964063
捐赠科研通 4786065
什么是DOI,文献DOI怎么找? 2555581
邀请新用户注册赠送积分活动 1516838
关于科研通互助平台的介绍 1477380