Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyuu发布了新的文献求助10
1秒前
JJ发布了新的文献求助30
3秒前
3秒前
Kirin完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
hahaer完成签到,获得积分10
4秒前
4秒前
万能图书馆应助樊珩采纳,获得10
5秒前
lyon完成签到,获得积分10
6秒前
幽默鱼完成签到,获得积分10
6秒前
nini发布了新的文献求助10
6秒前
SciGPT应助hahaer采纳,获得10
8秒前
8秒前
9秒前
虚幻采枫发布了新的文献求助10
10秒前
10秒前
夏天的风完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
天天快乐应助lin采纳,获得10
12秒前
科研通AI2S应助ahxb采纳,获得10
12秒前
猫猫叽丫丫完成签到,获得积分10
13秒前
嗯嗯完成签到 ,获得积分10
13秒前
小蘑菇应助樊珩采纳,获得10
14秒前
14秒前
hymmloveGD发布了新的文献求助10
15秒前
李美兰发布了新的文献求助10
16秒前
不起发布了新的文献求助10
16秒前
Apei完成签到,获得积分10
16秒前
BrillSpikes完成签到,获得积分10
17秒前
17秒前
香翔想相完成签到,获得积分10
18秒前
王秋婷发布了新的文献求助10
19秒前
阿航完成签到,获得积分10
21秒前
领导范儿应助樊珩采纳,获得10
22秒前
Assassion完成签到 ,获得积分10
22秒前
简单面包完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282