亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Scheduling完成签到 ,获得积分10
25秒前
25秒前
碧蓝满天完成签到 ,获得积分10
33秒前
38秒前
43秒前
45秒前
51秒前
空2完成签到 ,获得积分0
1分钟前
叶也完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
传奇3应助芒果瑞纳冰采纳,获得10
2分钟前
2分钟前
Chouvikin完成签到,获得积分10
2分钟前
2分钟前
桐夜完成签到 ,获得积分10
2分钟前
2分钟前
lqhccww发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zilt1109发布了新的文献求助10
3分钟前
Orange应助龙06采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
chenyue233完成签到,获得积分10
3分钟前
怪僻完成签到 ,获得积分10
3分钟前
郗妫完成签到 ,获得积分10
4分钟前
4分钟前
丘比特应助溜溜采纳,获得10
4分钟前
4分钟前
4分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
5分钟前
5分钟前
天天快乐应助浮生六记采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509664
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489810
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442070