Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高雍完成签到 ,获得积分10
刚刚
安和大桥完成签到,获得积分10
1秒前
所所应助阔达尔白采纳,获得10
1秒前
pups发布了新的文献求助10
1秒前
雾栖亓发布了新的文献求助10
1秒前
幸福柜子完成签到,获得积分10
1秒前
roger完成签到,获得积分10
2秒前
2秒前
东方树叶发布了新的文献求助10
2秒前
垃圾桶完成签到 ,获得积分10
2秒前
2秒前
乐乐应助Taishan采纳,获得10
2秒前
酷波er应助皮卡丘大王采纳,获得10
3秒前
3秒前
小周睡不饱完成签到,获得积分10
3秒前
3秒前
小虎发布了新的文献求助10
3秒前
吴彦祖的通通完成签到,获得积分10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
Stella应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401