Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的贞完成签到,获得积分10
刚刚
李健应助balzacsun采纳,获得10
1秒前
轻松的悟空完成签到 ,获得积分10
3秒前
susan完成签到,获得积分10
4秒前
0029完成签到,获得积分10
6秒前
Aki完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
9秒前
LXR完成签到,获得积分10
11秒前
thchiang发布了新的文献求助10
12秒前
李健应助北城采纳,获得10
12秒前
WDK发布了新的文献求助10
12秒前
13秒前
轻松的贞发布了新的文献求助10
13秒前
医学生Mavis完成签到,获得积分10
15秒前
nextconnie完成签到,获得积分10
15秒前
汉堡包应助yyj采纳,获得10
16秒前
zqh740发布了新的文献求助30
17秒前
18秒前
NexusExplorer应助pharmstudent采纳,获得10
19秒前
熊遇蜜完成签到,获得积分10
21秒前
panzer完成签到,获得积分10
22秒前
23秒前
lyt发布了新的文献求助10
24秒前
六月毕业关注了科研通微信公众号
25秒前
petrichor应助程程采纳,获得10
26秒前
圆儿完成签到 ,获得积分10
26秒前
潇洒的灵萱完成签到,获得积分10
26秒前
26秒前
26秒前
Toooo完成签到,获得积分10
27秒前
zqh740完成签到,获得积分10
27秒前
科研通AI5应助thchiang采纳,获得10
27秒前
lizzzzzz完成签到,获得积分10
28秒前
yyj发布了新的文献求助10
28秒前
请和我吃饭完成签到,获得积分10
29秒前
北城发布了新的文献求助10
30秒前
勤恳冰淇淋完成签到 ,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824