Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
扎根发布了新的文献求助150
1秒前
乐in林发布了新的文献求助10
1秒前
玩命的小虾米完成签到,获得积分10
2秒前
junlin完成签到,获得积分10
3秒前
所所应助surain采纳,获得10
4秒前
AMM发布了新的文献求助10
4秒前
Tian发布了新的文献求助100
6秒前
6秒前
FashionBoy应助聪明海云采纳,获得10
8秒前
666发布了新的文献求助10
11秒前
TCMning发布了新的文献求助10
12秒前
12秒前
四玖玖完成签到,获得积分10
14秒前
酷波er应助xx采纳,获得10
16秒前
海斯泰因发布了新的文献求助10
17秒前
Daisy发布了新的文献求助10
17秒前
害怕的水之完成签到,获得积分10
18秒前
一生低首向东坡完成签到,获得积分20
18秒前
风吹麦田应助ljn采纳,获得50
18秒前
18秒前
深情的鞯发布了新的文献求助10
19秒前
heaven发布了新的文献求助10
19秒前
雨中小王应助懵懂的寻冬采纳,获得10
19秒前
surain完成签到,获得积分10
19秒前
20秒前
李爱国应助xinL采纳,获得10
22秒前
22秒前
凡千灵溪完成签到 ,获得积分10
23秒前
23秒前
不南发布了新的文献求助10
23秒前
今后应助yss采纳,获得10
24秒前
SciGPT应助开朗的可乐采纳,获得10
24秒前
海斯泰因完成签到,获得积分10
25秒前
科研通AI6应助Roger采纳,获得10
26秒前
英姑应助syy080837采纳,获得10
26秒前
温柔衬衫完成签到,获得积分10
27秒前
28秒前
kk发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329