Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:2
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
模糊中正应助LYY采纳,获得10
1秒前
搜集达人应助阮煜城采纳,获得10
1秒前
大模型应助noobmaster采纳,获得10
2秒前
xiaoyi发布了新的文献求助10
3秒前
4秒前
科目三应助整齐的涵山采纳,获得10
6秒前
6秒前
zxzx完成签到,获得积分10
8秒前
思源应助原子采纳,获得10
8秒前
9秒前
lianliyou发布了新的文献求助10
12秒前
科研通AI2S应助笔墨留香采纳,获得10
13秒前
xiaoyi完成签到,获得积分10
14秒前
14秒前
14秒前
17秒前
无心的夜柳完成签到 ,获得积分10
17秒前
17秒前
脑洞疼应助真实的青曼采纳,获得10
17秒前
ahey完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
20秒前
mwz发布了新的文献求助10
21秒前
epitome发布了新的文献求助10
22秒前
神勇寄松完成签到,获得积分10
22秒前
故意的语梦完成签到,获得积分10
22秒前
搜集达人应助Xman采纳,获得30
23秒前
搜集达人应助兴奋柠檬采纳,获得10
23秒前
wen应助xiu-er采纳,获得10
23秒前
ttt完成签到,获得积分10
23秒前
ywang发布了新的文献求助10
25秒前
26秒前
暴躁的奇异果完成签到,获得积分10
27秒前
27秒前
猫猫头完成签到,获得积分10
27秒前
天天快乐应助故意的语梦采纳,获得10
28秒前
justsoso完成签到 ,获得积分10
29秒前
顺心书琴完成签到,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469