Machine Learning-Assisted Design of Advanced Polymeric Materials

计算机科学 代表(政治) 财产(哲学) 化学信息学 钥匙(锁) 过程(计算) 大数据 吞吐量 机器学习 组分(热力学) 人工智能 数据挖掘 化学 哲学 政治学 无线 法学 计算机安全 计算化学 物理 操作系统 认识论 热力学 政治 电信
作者
Liang Gao,Jiaping Lin,Liquan Wang,Lei Du
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (5): 571-584 被引量:9
标识
DOI:10.1021/accountsmr.3c00288
摘要

ConspectusPolymeric material research is encountering a new paradigm driven by machine learning (ML) and big data. The ML-assisted design has proven to be a successful approach for designing novel high-performance polymeric materials. This goal is mainly achieved through the following procedure: structure representation and database construction, establishment of a ML-based property prediction model, virtual design and high-throughput screening. The key to this approach lies in training ML models that delineate structure–property relationships based on available polymer data (e.g., structure, component, and property data), enabling the screening of promising polymers that satisfy the targeted property requirements. However, the relative scarcity of high-quality polymer data and the complex polymeric multiscale structure–property relationships pose challenges for this ML-assisted design method, such as data and modeling challenges.In this Account, we summarize the state-of-the-art advancements concerning the ML-assisted design of polymeric materials. Regarding structure representation and database construction, the digital representations of polymers are the predominant methods in cheminformatics along with some newly developed methods that integrate the polymeric multiscale structure characteristics. When establishing a ML-based property prediction model, the key is choosing and optimizing ML models to attain high-precision predictions across a vast chemical structure space. Advanced ML algorithms, such as transfer learning and multitask learning, have been utilized to address the data and modeling challenges. During the ML-assisted screening process, by defining and combining polymer genes, virtual polymer candidates are generated, and subsequently, their properties are predicted and high-throughput screened using ML property prediction models. Finally, the promising polymers identified through this approach are verified by computer simulations and experiments.We provide an overview of our recent efforts toward developing ML-assisted design approaches for discovering advanced polymeric materials and emphasize the intricate nature of polymer structural design. To well describe the multiscale structures of polymers, new structure representation methods, such as polymer fingerprint and cross-linking descriptors, were developed. Moreover, a multifidelity learning method was proposed to leverage the multisource isomerous polymer data from experiments and simulations. Additionally, graph neural networks and Bayesian optimization methods have been developed and applied for predicting polymer properties as well as designing polymer structures and compositions.Finally, we identify the current challenges and point out the development directions in this emerging field. It is highly desirable to establish new structure representation and advanced ML modeling methods for polymeric materials, particularly when constructing polymer large models based on chemical language. Through this Account, we seek to stimulate further interest and foster active collaborations for developing ML-assisted design approaches and realizing the innovation of advanced polymeric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇煜城发布了新的文献求助10
2秒前
KYG发布了新的文献求助30
2秒前
2秒前
Yolo完成签到,获得积分10
4秒前
上官若男应助Zenglongying采纳,获得10
6秒前
7秒前
8秒前
blossoms完成签到 ,获得积分10
11秒前
12秒前
cdercder应助行者无疆采纳,获得20
13秒前
顾矜应助KYG采纳,获得10
15秒前
Hello应助初色采纳,获得10
15秒前
汉堡包应助结实涑采纳,获得10
17秒前
19秒前
KYG完成签到,获得积分10
23秒前
Faye完成签到 ,获得积分10
24秒前
小鹿不迷路完成签到,获得积分10
28秒前
shuang完成签到 ,获得积分10
30秒前
31秒前
33秒前
脑洞疼应助xx采纳,获得10
33秒前
Cxg发布了新的文献求助10
36秒前
斯文败类应助仲半邪采纳,获得10
41秒前
minisword完成签到,获得积分10
41秒前
Owen应助朴实香露采纳,获得10
41秒前
OKOK完成签到,获得积分20
42秒前
海豚完成签到,获得积分10
42秒前
SciGPT应助杪123采纳,获得10
43秒前
丘比特应助阔达碧空采纳,获得10
43秒前
HEIKU应助minisword采纳,获得10
44秒前
心静听炊烟完成签到 ,获得积分10
44秒前
上官若男应助yinyue采纳,获得10
44秒前
45秒前
qidais完成签到,获得积分10
46秒前
46秒前
可怜的小羊完成签到,获得积分10
48秒前
xx发布了新的文献求助10
48秒前
泛泛之交发布了新的文献求助10
49秒前
在水一方应助我不会拉杆采纳,获得10
49秒前
50秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701566
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876150
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625279
邀请新用户注册赠送积分活动 769926
科研通“疑难数据库(出版商)”最低求助积分说明 742630