Prediction of anti-cancer drug synergy based on cross-matching network and cancer molecular subtypes

自编码 深度学习 计算机科学 人工智能 特征(语言学) 癌症 药品 抗癌药物 机器学习 人工神经网络 匹配(统计) 医学 药理学 病理 内科学 哲学 语言学
作者
Ran Su,Jingyi Han,Changming Sun,Degan Zhang,Jie Geng,Ping Wang,Xiaoyan Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:175: 108441-108441 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108441
摘要

At present, anti-cancer drug synergy therapy is one of the most important methods to overcome drug resistance and reduce drug toxicity in cancer treatment. High-throughput screening through deep learning can effectively improve the efficiency of discovering synergistic drugs. Nowadays, most of the existing deep learning algorithms for anti-cancer drug synergy prediction use deep neural networks and can only implicitly perform feature interaction. This study proposes a deep learning algorithm, named MolCross, which combines implicit feature interaction with explicit features to improve the accuracy of prediction of the anti-cancer drug synergy score. MolCross uses a deep autoencoder to extract features from high-dimensional input, uses the drug-specific subnetworks and cross-network to perform implicit feature interaction and explicit feature interaction respectively, and finally uses a synergy prediction network to combine the two feature interaction methods to obtain the final prediction results. We adopted a five-fold cross validation and compared MolCross with other four anti-cancer drug synergy prediction models. The results show that MolCross has better prediction performance than other models. MolCross also has good performance in terms of cross-cell line and cross-tissue type. Existing studies have demonstrated that cancer molecular subtypes have different sensitivities to targeted therapy. In this study, the features of cancer molecular subtype were introduced in the model using an embedding layer in MolCross to explore the effect of cancer molecular subtype on anti-cancer drug synergy. We also found that the cancer molecular subtype is one of the main factors affecting the synergy between drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
淡定的日记本完成签到,获得积分20
2秒前
2秒前
2秒前
飞飞应助姜宇航采纳,获得10
2秒前
zgf完成签到 ,获得积分10
2秒前
淡然柚子发布了新的文献求助10
2秒前
lxm完成签到,获得积分20
3秒前
猪儿虫儿完成签到 ,获得积分10
4秒前
粗心的画板完成签到,获得积分10
5秒前
rebubu发布了新的文献求助10
5秒前
builda完成签到,获得积分20
6秒前
6秒前
6秒前
顺顺尼发布了新的文献求助10
7秒前
7秒前
lxm发布了新的文献求助10
7秒前
7秒前
8秒前
数学真的好难完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
hahahah完成签到,获得积分20
9秒前
栾花花发布了新的文献求助10
9秒前
一只特立独行的朱完成签到,获得积分10
9秒前
11秒前
11秒前
啦啦啦啦发布了新的文献求助10
12秒前
嘉悦发布了新的文献求助30
12秒前
浮游应助积极如天采纳,获得10
12秒前
12秒前
钟钟完成签到,获得积分10
12秒前
筑城院完成签到,获得积分10
12秒前
sapioe关注了科研通微信公众号
14秒前
builda发布了新的文献求助10
14秒前
15秒前
所所应助栾花花采纳,获得10
15秒前
Deannn778发布了新的文献求助10
16秒前
科研通AI6应助西米采纳,获得10
17秒前
17秒前
关于我发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566