Prediction of anti-cancer drug synergy based on cross-matching network and cancer molecular subtypes

自编码 深度学习 计算机科学 人工智能 特征(语言学) 癌症 药品 抗癌药物 机器学习 人工神经网络 匹配(统计) 医学 药理学 病理 内科学 哲学 语言学
作者
Ran Su,Jingyi Han,Changming Sun,Degan Zhang,Jie Geng,Ping Wang,Xiaoyan Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:175: 108441-108441 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108441
摘要

At present, anti-cancer drug synergy therapy is one of the most important methods to overcome drug resistance and reduce drug toxicity in cancer treatment. High-throughput screening through deep learning can effectively improve the efficiency of discovering synergistic drugs. Nowadays, most of the existing deep learning algorithms for anti-cancer drug synergy prediction use deep neural networks and can only implicitly perform feature interaction. This study proposes a deep learning algorithm, named MolCross, which combines implicit feature interaction with explicit features to improve the accuracy of prediction of the anti-cancer drug synergy score. MolCross uses a deep autoencoder to extract features from high-dimensional input, uses the drug-specific subnetworks and cross-network to perform implicit feature interaction and explicit feature interaction respectively, and finally uses a synergy prediction network to combine the two feature interaction methods to obtain the final prediction results. We adopted a five-fold cross validation and compared MolCross with other four anti-cancer drug synergy prediction models. The results show that MolCross has better prediction performance than other models. MolCross also has good performance in terms of cross-cell line and cross-tissue type. Existing studies have demonstrated that cancer molecular subtypes have different sensitivities to targeted therapy. In this study, the features of cancer molecular subtype were introduced in the model using an embedding layer in MolCross to explore the effect of cancer molecular subtype on anti-cancer drug synergy. We also found that the cancer molecular subtype is one of the main factors affecting the synergy between drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei完成签到,获得积分10
1秒前
1秒前
科目三应助称心的砖头采纳,获得10
1秒前
自信的小鸽子完成签到,获得积分10
2秒前
酷波er应助Cornelia采纳,获得10
2秒前
3秒前
3秒前
Iridescent发布了新的文献求助20
4秒前
5秒前
RUI发布了新的文献求助10
5秒前
6秒前
若萱完成签到,获得积分10
6秒前
7秒前
烤冷面应助文艺水风采纳,获得20
7秒前
李大白完成签到 ,获得积分10
8秒前
wushuang完成签到,获得积分10
8秒前
ines发布了新的文献求助10
8秒前
Yuki发布了新的文献求助30
9秒前
Adzuki0812发布了新的文献求助10
9秒前
维尼熊完成签到 ,获得积分10
9秒前
学术羊发布了新的文献求助10
9秒前
9秒前
10秒前
Owen应助赵好好采纳,获得10
10秒前
幸运的羊完成签到,获得积分10
10秒前
11秒前
豆浆来点蒜泥完成签到,获得积分10
12秒前
zy发布了新的文献求助10
12秒前
老阎应助seven765采纳,获得30
12秒前
yaoccccchen完成签到,获得积分10
12秒前
深情安青应助说话请投币采纳,获得10
12秒前
蒸制发布了新的文献求助10
13秒前
青乔完成签到,获得积分10
13秒前
13秒前
田国兵发布了新的文献求助10
14秒前
Diane完成签到,获得积分10
14秒前
充电宝应助豆包采纳,获得10
14秒前
15秒前
15秒前
脑洞疼应助生动的沧海采纳,获得10
16秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983