Prediction of anti-cancer drug synergy based on cross-matching network and cancer molecular subtypes

自编码 深度学习 计算机科学 人工智能 特征(语言学) 癌症 药品 抗癌药物 机器学习 人工神经网络 匹配(统计) 医学 药理学 病理 内科学 哲学 语言学
作者
Ran Su,Jingyi Han,Changming Sun,Degan Zhang,Jie Geng,Ping Wang,Xiaoyan Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:175: 108441-108441 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108441
摘要

At present, anti-cancer drug synergy therapy is one of the most important methods to overcome drug resistance and reduce drug toxicity in cancer treatment. High-throughput screening through deep learning can effectively improve the efficiency of discovering synergistic drugs. Nowadays, most of the existing deep learning algorithms for anti-cancer drug synergy prediction use deep neural networks and can only implicitly perform feature interaction. This study proposes a deep learning algorithm, named MolCross, which combines implicit feature interaction with explicit features to improve the accuracy of prediction of the anti-cancer drug synergy score. MolCross uses a deep autoencoder to extract features from high-dimensional input, uses the drug-specific subnetworks and cross-network to perform implicit feature interaction and explicit feature interaction respectively, and finally uses a synergy prediction network to combine the two feature interaction methods to obtain the final prediction results. We adopted a five-fold cross validation and compared MolCross with other four anti-cancer drug synergy prediction models. The results show that MolCross has better prediction performance than other models. MolCross also has good performance in terms of cross-cell line and cross-tissue type. Existing studies have demonstrated that cancer molecular subtypes have different sensitivities to targeted therapy. In this study, the features of cancer molecular subtype were introduced in the model using an embedding layer in MolCross to explore the effect of cancer molecular subtype on anti-cancer drug synergy. We also found that the cancer molecular subtype is one of the main factors affecting the synergy between drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
魏戎儿发布了新的文献求助10
刚刚
Ava应助怎么睡不醒采纳,获得10
刚刚
夏侯炎彬发布了新的文献求助10
2秒前
wanci应助酚呜呜呜采纳,获得10
3秒前
3秒前
4秒前
大模型应助大头麦穗鱼采纳,获得10
4秒前
李栖迟发布了新的文献求助30
4秒前
天天完成签到,获得积分10
4秒前
拼搏的冰绿完成签到 ,获得积分10
4秒前
大懒猪发布了新的文献求助10
4秒前
不吃汉堡完成签到 ,获得积分10
5秒前
万能图书馆应助lmc采纳,获得10
6秒前
心想事陈发布了新的文献求助10
6秒前
烟花应助Laughter采纳,获得10
6秒前
hh发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
ldasfop完成签到,获得积分10
9秒前
Orange应助pqowzxc采纳,获得10
9秒前
11秒前
大懒猪完成签到,获得积分10
11秒前
11秒前
12秒前
科研小白完成签到,获得积分10
12秒前
12秒前
JamesPei应助陈冠羽采纳,获得10
12秒前
12秒前
爱坤坤完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
英俊的铭应助pumpkin采纳,获得30
14秒前
Mic应助idannn采纳,获得10
14秒前
共享精神应助bzlish采纳,获得10
16秒前
科研通AI6.1应助bzlish采纳,获得10
16秒前
Dr发布了新的文献求助10
16秒前
violet完成签到,获得积分10
17秒前
shuhaha发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737956
求助须知:如何正确求助?哪些是违规求助? 5374957
关于积分的说明 15336581
捐赠科研通 4881157
什么是DOI,文献DOI怎么找? 2623366
邀请新用户注册赠送积分活动 1572101
关于科研通互助平台的介绍 1528930