Prediction of anti-cancer drug synergy based on cross-matching network and cancer molecular subtypes

自编码 深度学习 计算机科学 人工智能 特征(语言学) 癌症 药品 抗癌药物 机器学习 人工神经网络 匹配(统计) 医学 药理学 内科学 哲学 病理 语言学
作者
Ran Su,Jingyi Han,Changming Sun,Degan Zhang,Jie Geng,Ping Wang,Xiaoyan Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:175: 108441-108441
标识
DOI:10.1016/j.compbiomed.2024.108441
摘要

At present, anti-cancer drug synergy therapy is one of the most important methods to overcome drug resistance and reduce drug toxicity in cancer treatment. High-throughput screening through deep learning can effectively improve the efficiency of discovering synergistic drugs. Nowadays, most of the existing deep learning algorithms for anti-cancer drug synergy prediction use deep neural networks and can only implicitly perform feature interaction. This study proposes a deep learning algorithm, named MolCross, which combines implicit feature interaction with explicit features to improve the accuracy of prediction of the anti-cancer drug synergy score. MolCross uses a deep autoencoder to extract features from high-dimensional input, uses the drug-specific subnetworks and cross-network to perform implicit feature interaction and explicit feature interaction respectively, and finally uses a synergy prediction network to combine the two feature interaction methods to obtain the final prediction results. We adopted a five-fold cross validation and compared MolCross with other four anti-cancer drug synergy prediction models. The results show that MolCross has better prediction performance than other models. MolCross also has good performance in terms of cross-cell line and cross-tissue type. Existing studies have demonstrated that cancer molecular subtypes have different sensitivities to targeted therapy. In this study, the features of cancer molecular subtype were introduced in the model using an embedding layer in MolCross to explore the effect of cancer molecular subtype on anti-cancer drug synergy. We also found that the cancer molecular subtype is one of the main factors affecting the synergy between drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uxu发布了新的文献求助10
1秒前
赘婿应助猪猪hero采纳,获得10
1秒前
2秒前
hz52应助博修采纳,获得200
3秒前
4秒前
大个应助栓牛哥采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
melisa完成签到,获得积分10
6秒前
路瑶瑶完成签到,获得积分10
6秒前
果实发布了新的文献求助30
7秒前
猪猪hero发布了新的文献求助10
7秒前
徐旖旎完成签到,获得积分10
7秒前
欢呼海露完成签到,获得积分10
7秒前
辛木发布了新的文献求助10
8秒前
科研通AI2S应助茉莉茉莉轰采纳,获得10
9秒前
Arrebol完成签到,获得积分10
9秒前
10秒前
AD钙奶发布了新的文献求助10
10秒前
你好啊发布了新的文献求助10
10秒前
勤劳涵山完成签到,获得积分10
10秒前
小蘑菇应助陶1122采纳,获得10
10秒前
秦摆烂发布了新的文献求助10
11秒前
Yangyujie完成签到,获得积分10
11秒前
qqwrv发布了新的文献求助10
12秒前
12秒前
12秒前
527完成签到,获得积分10
12秒前
13秒前
爱尚Coco发布了新的文献求助10
13秒前
勤劳涵山发布了新的文献求助10
14秒前
时言序完成签到,获得积分10
15秒前
脑洞疼应助kingwill采纳,获得30
16秒前
Merlin发布了新的文献求助50
17秒前
坦率的语芙完成签到,获得积分10
17秒前
丘比特应助zwc采纳,获得10
17秒前
孙晓婷发布了新的文献求助30
18秒前
18秒前
猪猪hero发布了新的文献求助10
19秒前
寒冷小天鹅完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149