子序列
阿贝尔群
序列(生物学)
数学
组合数学
递增子序列
离散数学
生物
遗传学
数学分析
有界函数
作者
Rui Wang,Han Chao,Jiangtao Peng
出处
期刊:Cornell University - arXiv
日期:2024-04-17
标识
DOI:10.48550/arxiv.2404.11307
摘要
Let $G$ be a finite abelian group and $S$ a sequence with elements of $G$. Let $|S|$ denote the length of $S$ and $k$ an integer with $k\in [1, |S|]$. Let $\Sigma_{k}(S) \subset G$ denote the set of group elements which can be expressed as a sum of a subsequence of $S$ with length $k$. Let $\Sigma(S)=\cup_{k=1}^{|S|}\Sigma_{k}(S)$ and $\Sigma_{\geq k}(S)=\cup_{t=k}^{|S|}\Sigma_{t}(S)$. It is known that if $0\not\in \Sigma(S)$, then $|\Sigma(S)|\geq |S|+|\mathrm{supp}(S)|-1$, where $|\mathrm{supp}(S)|$ denotes the number of distinct terms in $S$. In this paper, we study the above inequality. On one hand, we determine the sequence $S$ with $0\notin \Sigma(S)$ such that $|\Sigma(S)|= |S|+|\mathrm{supp}(S)|-1$. As a corollary, we disprove a conjecture of Gao, Grynkiewicz, and Xia. On the other hand, we generate the above inequality as if $|S|>k$ and $0\not\in \Sigma_{\geq k}(S)\cup \Sigma_{1}(S)$, then $|\Sigma_{\geq k}(S)|\geq |S|-k+|\mathrm{supp}(S)|$. Then among other results, we give an alternative proof of a conjecture of Hamidoune, which was first proved by Gao, Grynkiewicz, and Xia.
科研通智能强力驱动
Strongly Powered by AbleSci AI