空间光调制器
像素
材料科学
光调制器
光电子学
电光调制器
相(物质)
相位调制
光学
物理
量子力学
作者
Zhuoran Fang,Rui Chen,Johannes E. Fröch,Quentin A. A. Tanguy,Asir Intisar Khan,Xiangjin Wu,Virat Tara,Arnab Manna,David Sharp,Christopher Munley,Forrest Miller,Yang Zhao,Sarah Geiger,K. F. Böhringer,Matthew S. Reynolds,Eric Pop,Arka Majumdar
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-04-19
卷期号:18 (17): 11245-11256
被引量:5
标识
DOI:10.1021/acsnano.4c00340
摘要
Active metasurfaces with tunable subwavelength-scale nanoscatterers are promising platforms for high-performance spatial light modulators (SLMs). Among the tuning methods, phase-change materials (PCMs) are attractive because of their nonvolatile, threshold-driven, and drastic optical modulation, rendering zero-static power, crosstalk immunity, and compact pixels. However, current electrically controlled PCM-based metasurfaces are limited to global amplitude modulation, which is insufficient for SLMs. Here, an individual-pixel addressable, transmissive metasurface is experimentally demonstrated using the low-loss PCM Sb2Se3 and doped silicon nanowire heaters. The nanowires simultaneously form a diatomic metasurface, supporting a high-quality-factor (∼406) quasi-bound-state-in-the-continuum mode. A global phase-only modulation of ∼0.25π (∼0.2π) in simulation (experiment) is achieved, showing ten times enhancement. A 2π phase shift is further obtained using a guided-mode resonance with enhanced light-Sb2Se3 interaction. Finally, individual-pixel addressability and SLM functionality are demonstrated through deterministic multilevel switching (ten levels) and tunable far-field beam shaping. Our work presents zero-static power transmissive phase-only SLMs, enabled by electrically controlled low-loss PCMs and individual meta-molecule addressable metasurfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI