Smoothed grain boundary grooves, passivated defects and released compressive stresses via bulk molecule doping for efficient perovskite solar cells

材料科学 钙钛矿(结构) 晶界 兴奋剂 钝化 抗压强度 分子 复合材料 光电子学 化学工程 微观结构 图层(电子) 化学 有机化学 工程类
作者
Sheng-Min Wang,Zhenkun Liu,Mengqi Jin,Chong Chen,Mao Liang,Zhitao Shen,Fumin Li,Dong Yang,Xin Zhou,Rong Liu,Huilin Li,Ying Liu,Mingtai Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:125: 109543-109543 被引量:3
标识
DOI:10.1016/j.nanoen.2024.109543
摘要

In preparing efficient and stable perovskite solar cells (PSCs), it is challenging to simultaneously overcome the inherent problems of grain boundary grooves (GBGs), residual stress, defect states in perovskite film. Herein, a small organic molecule additive, pyridinium 1,4-zwitterionic thiolates (PZT), is synthesized to prepare high-quality PZT-doped perovskite active layer through bulk molecule doping method. The PZT promotes the crystallization of perovskite, optimizes the crystal orientation, and smooths the GBGs of perovskite films. Meanwhile, PZT releases compressive stress and passivates the perovskite defects at the surface/interface as well as internal grain boundaries in the perovskite film, which inhibits the charge recombination and promotes the charge separation and transport efficiency in the bulk perovskite films through the atomic interaction at the perovskite/PZT interface. In addition, the PZT also inhibits ion migration in perovskite film and increases film hydrophobicity. Benefiting from the above benefits, the PSCs based on perovskite:PZT layer achieved a maximum power conversion efficiency of 23.45%, much higher than that (21.79%) of control device. They also show significantly improved long-term stability under different aging test conditions. Our work provides a guide for improving the performance of PSCs by designing suitable multifunctional molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shotgod发布了新的文献求助10
刚刚
ling玲完成签到,获得积分10
刚刚
奔奔发布了新的文献求助10
刚刚
SweepingMonk应助虚心盼晴采纳,获得10
1秒前
2秒前
汉堡包应助XXF采纳,获得10
2秒前
wzh完成签到,获得积分10
2秒前
海底落日完成签到,获得积分20
2秒前
3秒前
科研通AI5应助123采纳,获得30
3秒前
烟花应助pi采纳,获得10
4秒前
汉堡包应助小木木壮采纳,获得10
4秒前
4秒前
yl发布了新的文献求助30
4秒前
菲菲呀发布了新的文献求助10
4秒前
4秒前
科研通AI5应助禾泽采纳,获得30
5秒前
坚强的樱发布了新的文献求助10
5秒前
英俊梦槐完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
6秒前
6秒前
白泽发布了新的文献求助10
7秒前
一条贤与发布了新的文献求助20
7秒前
7秒前
英俊谷秋完成签到,获得积分10
7秒前
7秒前
通~发布了新的文献求助10
8秒前
所所应助火星探险采纳,获得10
8秒前
8秒前
Guoyeye完成签到,获得积分10
8秒前
9秒前
阿芙乐尔完成签到 ,获得积分10
9秒前
_呱_发布了新的文献求助30
10秒前
10秒前
10秒前
Akim应助眼睛大的金鱼采纳,获得10
11秒前
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794