An intelligent recommendation system for personalised parametric garment patterns by integrating designer’s knowledge and 3D body measurements

体型 构造(python库) 特征(语言学) 人体 计算机科学 关系数据库 参数统计 数据库 钥匙(锁) 人工智能 数据挖掘 模式识别(心理学) 工程制图 工程类 数学 统计 哲学 语言学 计算机安全 程序设计语言
作者
Cheng Chi,Xianyi Zeng,Pascal Bruniaux,Guillaume Tartare
出处
期刊:Ergonomics [Taylor & Francis]
卷期号:: 1-21
标识
DOI:10.1080/00140139.2024.2332772
摘要

Garment pattern-making is one of the most important parts of the apparel industry. However, traditional pattern-making is an experience-based work, very time-consuming and ignores the body shape difference. This paper proposes a parametric design method for garment pattern based on body dimensions acquired from a body scanner and body features (body feature points and three segmented body part shape classification) identified by designers according to their professional knowledge. By using this method, we construct a men's shirt pattern recommendation system oriented to personalised fit. The system consists of two databases and three models. The two databases include a relational database (Database I) and a personalised basic pattern (PBP) database (Database II). The Database I is based on manual and three-dimensional (3D) measurements of human bodies by using designer's knowledge. And Database I is a relational database, which is organised in terms of the relational model of the body part shape and its key body feature dimensions. After a deep analysis of measured data, the irrelevant measured dimensions to human body shape have been excluded by designers and extract representative human body feature dimensions. In addition, the relations between body shapes and previously identified body feature dimensions have been modelled. From the above relational model, we label key feature point positions on the corresponding 3D body model obtained from 3D body scanning and correct the whole 3D human upper body model into the semantically interpretable one. The 3D personalised basic pattern is drawn on the corrected model based on these key feature points. By using three-dimensional to two-dimensional (3D-to-2D) flattening technology, a 2D flatten graph of the 3D personalised basic pattern of the interpretable model is obtained and slightly adjusted to the form suitable for industrial production, i.e., PBP and the PBP database (Database II) is built. In addition, the three models include a basic pattern parametric model (Model I) (characterizing the relations between the basic pattern and its key influencing human dimensions (chest girth and back length)), a regression model (Model II) which enables to infer from basic pattern to PBP for three body parts based on the one-to-one correspondence of key points between the PBPs and the basic patterns and a personalised shirt pattern parametric model (Model III) (characterizing the structural relations between the personalised shirt pattern (PBPshirt) and PBP). The initial input items of the recommendation system are the body dimension constraint parameters, including chest girth, back length and the body feature dimensions used to determine each body part shape as well as three shirt style constraint parameters (slim, regular and loose). By using Model I, the corresponding basic pattern can be generated through the user's chest girth and back length. Body feature dimensions determine the three body parts' shapes. Then, Model II is used to generate the PBP for the corresponding body parts shape. Based on the shirt style chosen by the user, Mode III is used to generate the PBPshirt from the PBP. The output of the recommendation system is a fit-oriented PBPshirt. Moreover, if the PBPshirt is unsatisfactory after a virtual try-on, four adjustable parameters (front side-seam dart, back side-seam dart, waist dart and garment bodice length) are designed to adjust the PBPshirt generated by the proposed recommendation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monkey完成签到,获得积分10
刚刚
DAI完成签到,获得积分10
1秒前
小富婆完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
小怪发布了新的文献求助10
3秒前
薛乎虚完成签到 ,获得积分10
3秒前
严西完成签到,获得积分10
3秒前
3秒前
qhcaywy完成签到,获得积分10
4秒前
冷艳的凡阳完成签到,获得积分10
5秒前
ding应助危机的菠萝采纳,获得10
5秒前
Kay76完成签到,获得积分10
5秒前
专注的水壶完成签到 ,获得积分10
5秒前
入海完成签到,获得积分10
7秒前
8秒前
AZE完成签到,获得积分10
9秒前
LuciusHe完成签到,获得积分10
9秒前
1107任务报告完成签到,获得积分10
9秒前
9秒前
99完成签到,获得积分10
10秒前
菟丝子完成签到,获得积分10
10秒前
Jack完成签到,获得积分10
11秒前
scq完成签到 ,获得积分10
11秒前
研友_CCQ_M完成签到,获得积分10
12秒前
赖建琛完成签到 ,获得积分10
12秒前
xyz完成签到,获得积分10
12秒前
青衣完成签到,获得积分10
13秒前
agrlook完成签到,获得积分10
13秒前
13秒前
卢嘉禾完成签到,获得积分10
13秒前
吃猫的鱼完成签到,获得积分10
13秒前
田様应助零源采纳,获得10
13秒前
Jackson_Cai完成签到,获得积分10
13秒前
14秒前
会飞的鱼完成签到,获得积分10
14秒前
14秒前
羽墨完成签到,获得积分10
15秒前
小七2022完成签到,获得积分10
15秒前
搜集达人应助Ybobo采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957196
求助须知:如何正确求助?哪些是违规求助? 3503244
关于积分的说明 11111843
捐赠科研通 3234361
什么是DOI,文献DOI怎么找? 1787887
邀请新用户注册赠送积分活动 870815
科研通“疑难数据库(出版商)”最低求助积分说明 802330