Knowledge-Augmented Visual Question Answering With Natural Language Explanation

计算机科学 答疑 一致性(知识库) 自然语言 自然语言生成 发电机(电路理论) 任务(项目管理) 人工智能 编码(集合论) 生成语法 桥(图论) 语义鸿沟 源代码 过程(计算) 自然语言处理 机器学习 情报检索 图像(数学) 图像检索 程序设计语言 集合(抽象数据类型) 医学 功率(物理) 物理 管理 量子力学 内科学 经济
作者
Jiayuan Xie,Yi Cai,Jiali Chen,Ruohang Xu,Jiexin Wang,Qing Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2652-2664 被引量:1
标识
DOI:10.1109/tip.2024.3379900
摘要

Visual question answering with natural language explanation (VQA-NLE) is a challenging task that requires models to not only generate accurate answers but also to provide explanations that justify the relevant decision-making processes. This task is accomplished by generating natural language sentences based on the given question-image pair. However, existing methods often struggle to ensure consistency between the answers and explanations due to their disregard of the crucial interactions between these factors. Moreover, existing methods overlook the potential benefits of incorporating additional knowledge, which hinders their ability to effectively bridge the semantic gap between questions and images, leading to less accurate explanations. In this paper, we present a novel approach denoted the knowledge-based iterative consensus VQA-NLE (KICNLE) model to address these limitations. To maintain consistency, our model incorporates an iterative consensus generator that adopts a multi-iteration generative method, enabling multiple iterations of the answer and explanation in each generation. In each iteration, the current answer is utilized to generate an explanation, which in turn guides the generation of a new answer. Additionally, a knowledge retrieval module is introduced to provide potentially valid candidate knowledge, guide the generation process, effectively bridge the gap between questions and images, and enable the production of high-quality answer-explanation pairs. Extensive experiments conducted on three different datasets demonstrate the superiority of our proposed KICNLE model over competing state-of-the-art approaches. Our code is available at https://github.com/Gary-code/KICNLE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
lu应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_MLJldZ发布了新的文献求助10
1秒前
wys完成签到 ,获得积分10
2秒前
3秒前
michaelvin完成签到,获得积分10
3秒前
学术大白完成签到 ,获得积分10
6秒前
6秒前
SYT完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
魏伯安发布了新的文献求助10
11秒前
11秒前
zhouleiwang完成签到,获得积分10
12秒前
李爱国应助aiming采纳,获得10
13秒前
无奈傲菡完成签到,获得积分10
14秒前
TT发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
sun发布了新的文献求助10
16秒前
荣荣完成签到,获得积分10
16秒前
17秒前
小安完成签到,获得积分10
18秒前
Spencer完成签到 ,获得积分10
18秒前
PengHu完成签到,获得积分10
19秒前
19秒前
21秒前
23秒前
23秒前
23秒前
ywang发布了新的文献求助10
24秒前
失眠虔纹完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849