Modulating surface microenvironment based on Ag-adorned CuO flower-liked nanospheres for strengthening C-‍C coupling during CO2RR

材料科学 联轴节(管道) 纳米技术 曲面(拓扑) 化学工程 冶金 几何学 数学 工程类
作者
Zhixiu Yang,Xiaoxuan Guo,Yong Chen,Lijing Gao,Ruiping Wei,Guomin Xiao
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:48: 104267-104267 被引量:1
标识
DOI:10.1016/j.surfin.2024.104267
摘要

Modulating the surface microenvironment is crucial in strengthening C-C coupling, leading to increasing selectivity in the production of multi-carbon (C2+) products during CO2 electroreduction. Herein, we have concentrated on investigating how to control the effect of surface distribution of active components of a series of Ag-decorated CuO, denoted as xAg/yCuO. These catalysts with similar chemical elements and morphology are designed, but they exhibit different selectivity in the CO2 electroreduction process. As a result, the Ag particles in 3Ag/CuO aggregates, while the Ag in 2Ag/2CuO and Ag/3CuO is uniformly distributed on the flower-like CuO nanosphere. Besides, 3Ag/CuO has the highest Faraday efficiency (FE) of CO with a value of 30.9% at 0.8 V vs. RHE, demonstrating rich-Ag catalysts are beneficial to produce CO. 2Ag/2CuO shows excellent FEC2H4 of 51.4% at -1.2 V vs. RHE due to the highly dispersed distribution of Ag on the flower-like CuO and higher vacancy O. Ag/3CuO exhibits higher FEH2 compared to other catalysts across a wide potential range, and its minimal impedance is attributed to its exceptional performance in the hydrogen evolution reaction. The proposed reaction pathway for the most effective catalysts 2Ag/2CuO, as determined by in-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), involves the following steps: CO2 →*CO2−→ *COOH → *CO→ *CHO→ *OCHCHO→ *OCHCH2→ C2H4. These findings demonstrate that controlling the surface structure can influence the local environment to enhance the efficiency of CO2 electroreduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
xgn发布了新的文献求助10
3秒前
金金金金完成签到,获得积分10
4秒前
Micky发布了新的文献求助10
4秒前
星之芋完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
8秒前
哈哈哈哈完成签到,获得积分10
8秒前
苹果寄文发布了新的文献求助30
8秒前
9秒前
11秒前
12秒前
鲤鱼盼望应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得30
14秒前
14秒前
稳wen发布了新的文献求助10
15秒前
木槿完成签到 ,获得积分10
16秒前
xgn完成签到,获得积分10
16秒前
DrW发布了新的文献求助10
16秒前
十年123发布了新的文献求助10
18秒前
18秒前
20秒前
11111111111发布了新的文献求助10
22秒前
zhan发布了新的文献求助10
23秒前
dophin应助十年123采纳,获得10
25秒前
zho发布了新的文献求助10
26秒前
sniper111完成签到,获得积分10
28秒前
自然芹完成签到,获得积分10
29秒前
研友_ZrqwOn完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
33秒前
34秒前
34秒前
科目三应助苹果寄文采纳,获得10
34秒前
高分求助中
Tracking and Data Fusion: A Handbook of Algorithms 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
Full waveform acoustic data processing 400
Bounded Meaning 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2877806
求助须知:如何正确求助?哪些是违规求助? 2491295
关于积分的说明 6743876
捐赠科研通 2172720
什么是DOI,文献DOI怎么找? 1154626
版权声明 586096
科研通“疑难数据库(出版商)”最低求助积分说明 566823