Model-Based Design of Variable Stiffness Soft Gripper Actuated by Smart Hydrogels

自愈水凝胶 软机器人 刚度 变量(数学) 材料科学 执行机构 计算机科学 工程类 人工智能 复合材料 数学 高分子化学 数学分析
作者
Qianyi Chen,Dingena Schott,Jovana Jovanova
出处
期刊:Soft robotics [Mary Ann Liebert]
被引量:5
标识
DOI:10.1089/soro.2023.0185
摘要

Soft grippers have shown their ability to grasp fragile and irregularly shaped objects, but they often require external mechanisms for actuation, limiting their use in large-scale situations. Their limited capacity to handle loads and deformations also restricts their customized grasping capabilities. To address these issues, a model-based soft gripper with adaptable stiffness was proposed. The proposed actuator comprises a silicone chamber with separate units containing hydrogel spheres. These spheres exhibit temperature-triggered swelling and shrinking behaviors. In addition, variable stiffness strips embedded in the units are introduced as the stiffness variation method. The validated finite element method model was used as the model-based design approach to describe the hydrogel behaviors and explore the affected factors on the bending performance. The results demonstrate that the actuator can be programmed to respond in a desired way, and the stiffness variation method enhances bending stiffness significantly. Specifically, a direct correlation exists between the bending angle and hydrogel sphere layers, with a maximum of 128° achieved. In addition, incorporating gap configurations into the chamber membrane results in a maximum threefold increase in the bending angle. Besides, the membrane type minimally impacts the bending angle from 21.3° to 24.6°. In addition, the embedded variable stiffness strips substantially increase stiffness, resulting in a 30-fold rise in bending stiffness. In conclusion, the novel soft gripper actuator enables substantial bending and stiffness control through active actuation, showcasing the potential for enhancing soft gripper performance in complex and multiscale grasping scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木豆完成签到,获得积分10
1秒前
99giddens举报李剑鸿求助涉嫌违规
3秒前
坦率凡梦完成签到,获得积分10
3秒前
梁政研完成签到 ,获得积分10
4秒前
叶子完成签到,获得积分10
4秒前
ding应助卡拉尔德采纳,获得10
7秒前
ScholarZmm完成签到,获得积分10
8秒前
sun完成签到,获得积分10
10秒前
moodys完成签到,获得积分10
12秒前
12秒前
rosalieshi完成签到,获得积分0
12秒前
!!!完成签到,获得积分10
14秒前
99giddens举报李剑鸿求助涉嫌违规
15秒前
16秒前
大鱼完成签到,获得积分10
17秒前
逃之姚姚完成签到 ,获得积分10
17秒前
Lorain完成签到,获得积分10
18秒前
欢呼的向秋完成签到,获得积分10
18秒前
19秒前
张张完成签到,获得积分20
19秒前
满栀关注了科研通微信公众号
20秒前
XXX发布了新的文献求助10
22秒前
张张发布了新的文献求助10
22秒前
科研通AI2S应助纯真的血茗采纳,获得10
24秒前
天天快乐应助hcy采纳,获得100
27秒前
zfc完成签到,获得积分10
27秒前
SYT完成签到,获得积分10
27秒前
iNk应助bo采纳,获得10
28秒前
隐形曼青应助Denghui采纳,获得10
30秒前
31秒前
34秒前
37秒前
39秒前
aikey发布了新的文献求助10
40秒前
天天完成签到 ,获得积分10
41秒前
Jingg完成签到,获得积分10
43秒前
俊逸的篮球完成签到,获得积分10
43秒前
大个应助科研通管家采纳,获得10
43秒前
小蘑菇应助科研通管家采纳,获得10
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312235
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521765
捐赠科研通 2620550
什么是DOI,文献DOI怎么找? 1432948
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134