Model-Based Design of Variable Stiffness Soft Gripper Actuated by Smart Hydrogels

自愈水凝胶 软机器人 刚度 变量(数学) 材料科学 执行机构 计算机科学 工程类 人工智能 复合材料 数学 高分子化学 数学分析
作者
Qianyi Chen,Dingena Schott,Jovana Jovanova
出处
期刊:Soft robotics [Mary Ann Liebert]
被引量:5
标识
DOI:10.1089/soro.2023.0185
摘要

Soft grippers have shown their ability to grasp fragile and irregularly shaped objects, but they often require external mechanisms for actuation, limiting their use in large-scale situations. Their limited capacity to handle loads and deformations also restricts their customized grasping capabilities. To address these issues, a model-based soft gripper with adaptable stiffness was proposed. The proposed actuator comprises a silicone chamber with separate units containing hydrogel spheres. These spheres exhibit temperature-triggered swelling and shrinking behaviors. In addition, variable stiffness strips embedded in the units are introduced as the stiffness variation method. The validated finite element method model was used as the model-based design approach to describe the hydrogel behaviors and explore the affected factors on the bending performance. The results demonstrate that the actuator can be programmed to respond in a desired way, and the stiffness variation method enhances bending stiffness significantly. Specifically, a direct correlation exists between the bending angle and hydrogel sphere layers, with a maximum of 128° achieved. In addition, incorporating gap configurations into the chamber membrane results in a maximum threefold increase in the bending angle. Besides, the membrane type minimally impacts the bending angle from 21.3° to 24.6°. In addition, the embedded variable stiffness strips substantially increase stiffness, resulting in a 30-fold rise in bending stiffness. In conclusion, the novel soft gripper actuator enables substantial bending and stiffness control through active actuation, showcasing the potential for enhancing soft gripper performance in complex and multiscale grasping scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
官官过完成签到 ,获得积分10
1秒前
森源海发布了新的文献求助10
1秒前
常常完成签到 ,获得积分10
2秒前
2秒前
4秒前
FashionBoy应助黄臻采纳,获得10
4秒前
懦弱的咖啡豆完成签到,获得积分10
4秒前
4秒前
5秒前
linger完成签到 ,获得积分10
6秒前
Ma完成签到,获得积分10
6秒前
活力南露完成签到,获得积分10
8秒前
小仙完成签到,获得积分10
8秒前
8秒前
不信人间有白头完成签到 ,获得积分10
8秒前
wsy完成签到,获得积分10
9秒前
Hyp完成签到 ,获得积分10
9秒前
支雨泽发布了新的文献求助10
10秒前
Tianling完成签到,获得积分0
11秒前
11秒前
优美紫槐应助qqqq_8采纳,获得10
11秒前
wsy发布了新的文献求助30
12秒前
纳米酶催化完成签到,获得积分10
12秒前
WuYixiao1012完成签到,获得积分10
12秒前
1111完成签到,获得积分10
12秒前
中二少女爱喝可乐完成签到,获得积分10
13秒前
dzy1317完成签到,获得积分10
14秒前
一玮完成签到 ,获得积分10
14秒前
快乐完成签到,获得积分10
15秒前
15秒前
热心的尔蓝完成签到,获得积分10
16秒前
风趣的方盒完成签到,获得积分10
16秒前
哈哈完成签到,获得积分10
17秒前
18秒前
18秒前
xiao完成签到,获得积分10
18秒前
Jian完成签到,获得积分10
20秒前
踏雪完成签到,获得积分10
20秒前
贺秋寒发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688566
关于积分的说明 14854693
捐赠科研通 4693840
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806