已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Model-Based Design of Variable Stiffness Soft Gripper Actuated by Smart Hydrogels

自愈水凝胶 软机器人 刚度 变量(数学) 材料科学 执行机构 计算机科学 工程类 人工智能 复合材料 数学 高分子化学 数学分析
作者
Qianyi Chen,Dingena Schott,Jovana Jovanova
出处
期刊:Soft robotics [Mary Ann Liebert, Inc.]
被引量:5
标识
DOI:10.1089/soro.2023.0185
摘要

Soft grippers have shown their ability to grasp fragile and irregularly shaped objects, but they often require external mechanisms for actuation, limiting their use in large-scale situations. Their limited capacity to handle loads and deformations also restricts their customized grasping capabilities. To address these issues, a model-based soft gripper with adaptable stiffness was proposed. The proposed actuator comprises a silicone chamber with separate units containing hydrogel spheres. These spheres exhibit temperature-triggered swelling and shrinking behaviors. In addition, variable stiffness strips embedded in the units are introduced as the stiffness variation method. The validated finite element method model was used as the model-based design approach to describe the hydrogel behaviors and explore the affected factors on the bending performance. The results demonstrate that the actuator can be programmed to respond in a desired way, and the stiffness variation method enhances bending stiffness significantly. Specifically, a direct correlation exists between the bending angle and hydrogel sphere layers, with a maximum of 128° achieved. In addition, incorporating gap configurations into the chamber membrane results in a maximum threefold increase in the bending angle. Besides, the membrane type minimally impacts the bending angle from 21.3° to 24.6°. In addition, the embedded variable stiffness strips substantially increase stiffness, resulting in a 30-fold rise in bending stiffness. In conclusion, the novel soft gripper actuator enables substantial bending and stiffness control through active actuation, showcasing the potential for enhancing soft gripper performance in complex and multiscale grasping scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
刚刚
Lucas应助zhangxinxin采纳,获得20
1秒前
小蘑菇应助苏幕遮采纳,获得10
2秒前
zoerist发布了新的文献求助10
2秒前
北极星完成签到 ,获得积分10
2秒前
3秒前
xwq完成签到,获得积分10
3秒前
共享精神应助桐炫采纳,获得10
5秒前
6秒前
6秒前
活泼靖柏完成签到,获得积分20
6秒前
6秒前
lihaoyu发布了新的文献求助10
6秒前
高兴完成签到,获得积分10
7秒前
8秒前
天天快乐应助DAWONG采纳,获得10
8秒前
一枚咸鱼发布了新的文献求助20
9秒前
halo发布了新的文献求助10
9秒前
Derson完成签到,获得积分10
10秒前
10秒前
jkkm关注了科研通微信公众号
11秒前
LYPY发布了新的文献求助10
11秒前
彩色的荔枝完成签到 ,获得积分10
11秒前
12秒前
12秒前
大模型应助tuski采纳,获得10
13秒前
14秒前
ShengzhangLiu发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
宇称yu完成签到 ,获得积分10
19秒前
19秒前
21秒前
22秒前
科研通AI5应助小元采纳,获得30
23秒前
852应助jiangjiang采纳,获得10
23秒前
一枚咸鱼完成签到,获得积分10
24秒前
25秒前
ale发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899596
求助须知:如何正确求助?哪些是违规求助? 4179969
关于积分的说明 12975865
捐赠科研通 3944037
什么是DOI,文献DOI怎么找? 2163607
邀请新用户注册赠送积分活动 1181857
关于科研通互助平台的介绍 1087598