Model-Based Design of Variable Stiffness Soft Gripper Actuated by Smart Hydrogels

自愈水凝胶 软机器人 刚度 变量(数学) 材料科学 执行机构 计算机科学 工程类 人工智能 复合材料 数学 高分子化学 数学分析
作者
Qianyi Chen,Dingena Schott,Jovana Jovanova
出处
期刊:Soft robotics [Mary Ann Liebert]
被引量:5
标识
DOI:10.1089/soro.2023.0185
摘要

Soft grippers have shown their ability to grasp fragile and irregularly shaped objects, but they often require external mechanisms for actuation, limiting their use in large-scale situations. Their limited capacity to handle loads and deformations also restricts their customized grasping capabilities. To address these issues, a model-based soft gripper with adaptable stiffness was proposed. The proposed actuator comprises a silicone chamber with separate units containing hydrogel spheres. These spheres exhibit temperature-triggered swelling and shrinking behaviors. In addition, variable stiffness strips embedded in the units are introduced as the stiffness variation method. The validated finite element method model was used as the model-based design approach to describe the hydrogel behaviors and explore the affected factors on the bending performance. The results demonstrate that the actuator can be programmed to respond in a desired way, and the stiffness variation method enhances bending stiffness significantly. Specifically, a direct correlation exists between the bending angle and hydrogel sphere layers, with a maximum of 128° achieved. In addition, incorporating gap configurations into the chamber membrane results in a maximum threefold increase in the bending angle. Besides, the membrane type minimally impacts the bending angle from 21.3° to 24.6°. In addition, the embedded variable stiffness strips substantially increase stiffness, resulting in a 30-fold rise in bending stiffness. In conclusion, the novel soft gripper actuator enables substantial bending and stiffness control through active actuation, showcasing the potential for enhancing soft gripper performance in complex and multiscale grasping scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cherry发布了新的文献求助10
刚刚
贾浩然完成签到 ,获得积分10
2秒前
tz发布了新的文献求助10
2秒前
2秒前
shi完成签到,获得积分10
4秒前
Akim应助钟昊采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
佘余完成签到,获得积分10
5秒前
疯少可还行完成签到,获得积分20
6秒前
简单尔风发布了新的文献求助10
6秒前
云鲲完成签到,获得积分10
7秒前
liuyu完成签到,获得积分10
7秒前
7秒前
酷奔完成签到 ,获得积分10
7秒前
科研通AI6应助tz采纳,获得10
8秒前
Yjjjj完成签到 ,获得积分10
10秒前
大模型应助楚天正阔采纳,获得10
11秒前
科研通AI6应助漂亮萝莉采纳,获得10
11秒前
烟花应助莫宝采纳,获得10
11秒前
佘余发布了新的文献求助10
11秒前
12秒前
三玖完成签到,获得积分10
13秒前
123完成签到 ,获得积分10
13秒前
13秒前
qiuxiu完成签到,获得积分10
13秒前
13秒前
NexusExplorer应助寻123采纳,获得10
15秒前
蓝天发布了新的文献求助10
16秒前
摘星小喵完成签到,获得积分10
16秒前
充电宝应助呵呵呵呵采纳,获得10
16秒前
水波荡漾完成签到,获得积分10
18秒前
18秒前
19秒前
鸫鸫发布了新的文献求助10
19秒前
研友_P85D6Z完成签到,获得积分10
19秒前
李大龙发布了新的文献求助10
19秒前
20秒前
桐桐应助拉长的发夹采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652677
求助须知:如何正确求助?哪些是违规求助? 4787910
关于积分的说明 15061048
捐赠科研通 4811137
什么是DOI,文献DOI怎么找? 2573643
邀请新用户注册赠送积分活动 1529483
关于科研通互助平台的介绍 1488307