清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The value of machine learning based on CT radiomics in the preoperative identification of peripheral nerve invasion in colorectal cancer: a two-center study

特征选择 医学 人工智能 神经组阅片室 分类器(UML) 结直肠癌 特征(语言学) 无线电技术 模式识别(心理学) 放射科 机器学习 计算机科学 癌症 神经学 内科学 精神科 语言学 哲学
作者
Nian-jun Liu,M Liu,Wenxi Tian,Yanan Zhai,Wei-long Lv,Tong Wang,Sujuan Guo
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01664-1
摘要

Abstract Background We aimed to explore the application value of various machine learning (ML) algorithms based on multicenter CT radiomics in identifying peripheral nerve invasion (PNI) of colorectal cancer (CRC). Methods A total of 268 patients with colorectal cancer who underwent CT examination in two hospitals from January 2016 to December 2022 were considered. Imaging and clinicopathological data were collected through the Picture Archiving and Communication System (PACS). The Feature Explorer software (FAE) was used to identify the peripheral nerve invasion of colorectal patients in center 1, and the best feature selection and classification channels were selected. Finally, the best feature selection and classifier pipeline were verified in center 2. Results The six-feature models using RFE feature selection and GP classifier had the highest AUC values, which were 0.610, 0.699, and 0.640, respectively. FAE generated a more concise model based on one feature (wavelet-HLL-glszm-LargeAreaHighGrayLevelEmphasis) and achieved AUC values of 0.614 and 0.663 on the validation and test sets, respectively, using the “one standard error” rule. Using ANOVA feature selection, the GP classifier had the best AUC value in a one-feature model, with AUC values of 0.611, 0.663, and 0.643 on the validation, internal test, and external test sets, respectively. Similarly, when using the “one standard error” rule, the model based on one feature (wave-let-HLL-glszm-LargeAreaHighGrayLevelEmphasis) achieved AUC values of 0.614 and 0.663 on the validation and test sets, respectively. Conclusions Combining artificial intelligence and radiomics features is a promising approach for identifying peripheral nerve invasion in colorectal cancer. This innovative technique holds significant potential for clinical medicine, offering broader application prospects in the field. Critical relevance statement The multi-channel ML method based on CT radiomics has a simple operation process and can be used to assist in the clinical screening of patients with CRC accompanied by PNI. Key points • Multi-channel ML in the identification of peripheral nerve invasion in CRC. • Multi-channel ML method based on CT-radiomics can detect the PNI of CRC. • Early preoperative identification of PNI in CRC is helpful to improve the formulation of treatment strategies and the prognosis of patients. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
50秒前
52秒前
xun发布了新的文献求助10
56秒前
脑洞疼应助xun采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
mashibeo完成签到,获得积分10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
xun完成签到,获得积分20
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
2分钟前
fireking_sid完成签到,获得积分10
3分钟前
昨夜梦星河完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
虚幻元风完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
gszy1975完成签到,获得积分10
6分钟前
Panini完成签到 ,获得积分10
6分钟前
6分钟前
HHH完成签到 ,获得积分10
7分钟前
明理从露完成签到 ,获得积分10
7分钟前
沿途有你完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
zjspidany应助幻梦如歌采纳,获得10
8分钟前
zcydbttj2011完成签到 ,获得积分10
8分钟前
故渊完成签到,获得积分10
9分钟前
北国雪未消完成签到 ,获得积分10
9分钟前
ccc完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
宇心应助科研通管家采纳,获得10
9分钟前
江三村完成签到 ,获得积分10
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314426
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622422
什么是DOI,文献DOI怎么找? 1434534
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881