Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study

子痫 医学 接收机工作特性 逻辑回归 随机森林 风险评估 机器学习 产科 怀孕 计算机科学 内科学 遗传学 生物 计算机安全
作者
Tünde Montgomery-Csobán,Kimberley Kavanagh,Paul Murray,Chris Robertson,Sarah Barry,Ugochinyere Vivian Ukah,Beth Payne,K. H. Nicolaides,Argyro Syngelaki,Olivia Ionescu,Ranjit Akolekar,Jennifer A. Hutcheon,Laura A. Magee,Peter von Dadelszen,Mark Brown,Gregory K. Davis,Claire E. Parker,Barry N J Walters,Nelson Sass,J. Mark Ansermino,Vivien Cao,Geoffrey W. Cundiff,Emma C.M. von Dadelszen,M. Joanne Douglas,Guy A. Dumont,Dustin Dunsmuir,Jennifer A. Hutcheon,K.S. Joseph,Sayrin Lalji,Tang Lee,Jing Li,Kenneth Lim,Sarka Lisonkova,P Lott,Jennifer Menzies,Alexandra L. Millman,Lynne Palmer,Beth Payne,Ziguang Qu,James A. Russell,Diane Sawchuck,Dorothy Shaw,D. Keith Still,Ugochinyere Vivian Ukah,Brenda Wagner,Keith R. Walley,D Hugo,The late Andrée Gruslin,George Tawagi,Graeme N. Smith,Anne‐Marie Côté,Jean‐Marie Moutquin,Annie Ouellet,Shoo K. Lee,Tao Duan,Jian Zhou,The late Farizah Haniff,Swati Mahajan,Amanda Noovao,Hanna Karjalainend,Alja Kortelainen,Hannele Laivuori,J. Wessel Ganzevoort,Henk Groen,P Kyle,Michael C. Moore,Barbra Pullar,Zulfiqar A Bhutta,Rahat Qureshi,Rozina Sikandar,The late Shereen Z. Bhutta,Garth Cloete,David Hall,The late Erika van Papendorp,D.W. Steyn,Christine Biryabarema,Florence Mirembe,Annettee Nakimuli,John Allotey,Shakila Thangaratinam,K. H. Nicolaides,Olivia Ionescu,Argyro Syngelaki,Michael de Swiet,Laura A. Magee,Peter von Dadelszen,Ranjit Akolekar,James J. Walker,Stephen C. Robson,Fiona Broughton-Pipkin,Pamela Loughna,Manu Vatish,Christopher W.G. Redman,Sarah Barry,Kimberley Kavanagh,Tunde Montgomery-Csobán,Paul Murray,Chris Robertson,Eleni Tsigas,Douglas Woelkers,Marshall D. Lindheimer,Michael W. Varner,Baha M. Sibai,Mario Merialdi,Mariana Widmer
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (4): e238-e250 被引量:1
标识
DOI:10.1016/s2589-7500(23)00267-4
摘要

BackgroundAffecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.MethodsWe used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.FindingsOf 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).InterpretationThe PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.FundingUniversity of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福明明发布了新的文献求助10
刚刚
1秒前
张张完成签到 ,获得积分10
2秒前
顾矜应助文子采纳,获得10
3秒前
Stair发布了新的文献求助10
5秒前
6秒前
鲤鱼鸽子应助Cassie采纳,获得10
6秒前
6秒前
川流与行云完成签到,获得积分10
6秒前
Augenstern发布了新的文献求助10
6秒前
叶远望发布了新的文献求助10
8秒前
lcxszsd发布了新的文献求助10
10秒前
科研的神龙猫完成签到,获得积分10
10秒前
小小K发布了新的文献求助10
10秒前
彭于晏应助谢峥嵘采纳,获得10
10秒前
11秒前
Ha La La La发布了新的文献求助10
12秒前
华仔应助大邱白菜采纳,获得10
13秒前
斯南完成签到,获得积分10
14秒前
15秒前
16秒前
小小K完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
18秒前
Stair完成签到,获得积分10
19秒前
善学以致用应助叶远望采纳,获得10
19秒前
20秒前
20秒前
小晚风完成签到,获得积分10
21秒前
菠萝派发布了新的文献求助10
21秒前
112233完成签到,获得积分20
22秒前
atonnng完成签到,获得积分10
23秒前
24秒前
May完成签到 ,获得积分10
25秒前
25秒前
jianglili发布了新的文献求助10
26秒前
29秒前
29秒前
30秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502250
关于积分的说明 11106925
捐赠科研通 3232714
什么是DOI,文献DOI怎么找? 1787067
邀请新用户注册赠送积分活动 870375
科研通“疑难数据库(出版商)”最低求助积分说明 801994