Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study

子痫 医学 接收机工作特性 逻辑回归 随机森林 风险评估 机器学习 产科 怀孕 计算机科学 内科学 计算机安全 遗传学 生物
作者
Tünde Montgomery-Csobán,Kimberley Kavanagh,Paul Murray,Chris Robertson,Sarah Barry,Ugochinyere Vivian Ukah,Beth Payne,K. H. Nicolaides,Argyro Syngelaki,Olivia Ionescu,Ranjit Akolekar,Jennifer A. Hutcheon,Laura A. Magee,Peter von Dadelszen,Mark Brown,Gregory K. Davis,Claire E. Parker,Barry N J Walters,Nelson Sass,J. Mark Ansermino,Vivien Cao,Geoffrey W. Cundiff,Emma C.M. von Dadelszen,M. Joanne Douglas,Guy A. Dumont,Dustin Dunsmuir,Jennifer A. Hutcheon,K.S. Joseph,Sayrin Lalji,Tang Lee,Jing Li,Kenneth Lim,Sarka Lisonkova,P Lott,Jennifer Menzies,Alexandra L. Millman,Lynne Palmer,Beth Payne,Ziguang Qu,James A. Russell,Diane Sawchuck,Dorothy Shaw,D. Keith Still,Ugochinyere Vivian Ukah,Brenda Wagner,Keith R. Walley,D Hugo,The late Andrée Gruslin,George Tawagi,Graeme N. Smith,Anne‐Marie Côté,Jean‐Marie Moutquin,Annie Ouellet,Shoo K. Lee,Tao Duan,Jian Zhou,The late Farizah Haniff,Swati Mahajan,Amanda Noovao,Hanna Karjalainend,Alja Kortelainen,Hannele Laivuori,J. Wessel Ganzevoort,Henk Groen,P Kyle,Michael C. Moore,Barbra Pullar,Zulfiqar A Bhutta,Rahat Qureshi,Rozina Sikandar,The late Shereen Z. Bhutta,Garth Cloete,David Hall,The late Erika van Papendorp,D.W. Steyn,Christine Biryabarema,Florence Mirembe,Annettee Nakimuli,John Allotey,Shakila Thangaratinam,K. H. Nicolaides,Olivia Ionescu,Argyro Syngelaki,Michael de Swiet,Laura A. Magee,Peter von Dadelszen,Ranjit Akolekar,James J. Walker,Stephen C. Robson,Fiona Broughton-Pipkin,Pamela Loughna,Manu Vatish,Christopher W.G. Redman,Sarah Barry,Kimberley Kavanagh,Tunde Montgomery-Csobán,Paul Murray,Chris Robertson,Eleni Tsigas,Douglas Woelkers,Marshall D. Lindheimer,Michael W. Varner,Baha M. Sibai,Mario Merialdi,Mariana Widmer
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e238-e250 被引量:1
标识
DOI:10.1016/s2589-7500(23)00267-4
摘要

BackgroundAffecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.MethodsWe used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.FindingsOf 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).InterpretationThe PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.FundingUniversity of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助海绵宝宝采纳,获得10
刚刚
YUJIEYA完成签到 ,获得积分10
刚刚
鳗鱼老师发布了新的文献求助10
1秒前
3秒前
4秒前
红叶应助liuzengzhang666采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
薰硝壤应助科研通管家采纳,获得20
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
俭朴静竹应助科研通管家采纳,获得10
6秒前
paparazzi221应助科研通管家采纳,获得50
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
万里晴空分泌完成签到,获得积分10
7秒前
桐桐应助潇洒的如蓉采纳,获得10
8秒前
天天快乐应助11采纳,获得10
8秒前
9秒前
orixero应助gyq2006采纳,获得10
9秒前
迷人荷花发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
旺仔完成签到,获得积分10
11秒前
112255完成签到,获得积分10
12秒前
工科研狗完成签到,获得积分10
14秒前
zzz发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3110296
求助须知:如何正确求助?哪些是违规求助? 2760795
关于积分的说明 7661903
捐赠科研通 2415502
什么是DOI,文献DOI怎么找? 1281924
科研通“疑难数据库(出版商)”最低求助积分说明 618824
版权声明 599472