High-accuracy protein model quality assessment using attention graph neural networks

诱饵 计算机科学 机器学习 图形 人工智能 人工神经网络 蛋白质结构预测 数据挖掘 蛋白质结构 理论计算机科学 核磁共振 生物化学 物理 受体 化学
作者
Pei-Dong Zhang,Chun-Qiu Xia,Hong-Bin Shen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbac614
摘要

Great improvement has been brought to protein tertiary structure prediction through deep learning. It is important but very challenging to accurately rank and score decoy structures predicted by different models. CASP14 results show that existing quality assessment (QA) approaches lag behind the development of protein structure prediction methods, where almost all existing QA models degrade in accuracy when the target is a decoy of high quality. How to give an accurate assessment to high-accuracy decoys is particularly useful with the available of accurate structure prediction methods. Here we propose a fast and effective single-model QA method, QATEN, which can evaluate decoys only by their topological characteristics and atomic types. Our model uses graph neural networks and attention mechanisms to evaluate global and amino acid level scores, and uses specific loss functions to constrain the network to focus more on high-precision decoys and protein domains. On the CASP14 evaluation decoys, QATEN performs better than other QA models under all correlation coefficients when targeting average LDDT. QATEN shows promising performance when considering only high-accuracy decoys. Compared to the embedded evaluation modules of predicted ${C}_{\alpha^{-}} RMSD$ (pRMSD) in RosettaFold and predicted LDDT (pLDDT) in AlphaFold2, QATEN is complementary and capable of achieving better evaluation on some decoy structures generated by AlphaFold2 and RosettaFold. These results suggest that the new QATEN approach can be used as a reliable independent assessment algorithm for high-accuracy protein structure decoys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
NexusExplorer应助花开采纳,获得10
2秒前
orixero应助咚咚采纳,获得10
2秒前
orixero应助21采纳,获得10
2秒前
个性雪糕发布了新的文献求助10
2秒前
顾矜应助naturehome采纳,获得10
2秒前
yaya发布了新的文献求助10
3秒前
bofu发布了新的文献求助10
3秒前
yangjoy发布了新的文献求助30
4秒前
5秒前
李涵发布了新的文献求助10
5秒前
lvvyy126完成签到,获得积分10
6秒前
6秒前
8秒前
bofu发布了新的文献求助10
10秒前
12秒前
12秒前
萧水白应助一天一篇采纳,获得10
14秒前
FashionBoy应助张萝卜采纳,获得10
14秒前
14秒前
搜集达人应助彭佳丽采纳,获得10
15秒前
无限一凤发布了新的文献求助10
15秒前
16秒前
bofu发布了新的文献求助10
17秒前
naturehome发布了新的文献求助10
17秒前
LZHWSND完成签到,获得积分10
18秒前
18秒前
19秒前
科研通AI2S应助ark861023采纳,获得10
19秒前
21秒前
共享精神应助优秀星星采纳,获得10
21秒前
22秒前
22秒前
onestepcloser完成签到 ,获得积分10
23秒前
把握当下完成签到,获得积分10
23秒前
bofu发布了新的文献求助10
23秒前
桃夭完成签到,获得积分20
24秒前
cc完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451