High-accuracy protein model quality assessment using attention graph neural networks

诱饵 计算机科学 机器学习 图形 人工智能 人工神经网络 蛋白质结构预测 数据挖掘 蛋白质结构 理论计算机科学 核磁共振 生物化学 物理 受体 化学
作者
Pei-Dong Zhang,Chun-Qiu Xia,Hong-Bin Shen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbac614
摘要

Great improvement has been brought to protein tertiary structure prediction through deep learning. It is important but very challenging to accurately rank and score decoy structures predicted by different models. CASP14 results show that existing quality assessment (QA) approaches lag behind the development of protein structure prediction methods, where almost all existing QA models degrade in accuracy when the target is a decoy of high quality. How to give an accurate assessment to high-accuracy decoys is particularly useful with the available of accurate structure prediction methods. Here we propose a fast and effective single-model QA method, QATEN, which can evaluate decoys only by their topological characteristics and atomic types. Our model uses graph neural networks and attention mechanisms to evaluate global and amino acid level scores, and uses specific loss functions to constrain the network to focus more on high-precision decoys and protein domains. On the CASP14 evaluation decoys, QATEN performs better than other QA models under all correlation coefficients when targeting average LDDT. QATEN shows promising performance when considering only high-accuracy decoys. Compared to the embedded evaluation modules of predicted ${C}_{\alpha^{-}} RMSD$ (pRMSD) in RosettaFold and predicted LDDT (pLDDT) in AlphaFold2, QATEN is complementary and capable of achieving better evaluation on some decoy structures generated by AlphaFold2 and RosettaFold. These results suggest that the new QATEN approach can be used as a reliable independent assessment algorithm for high-accuracy protein structure decoys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzx396完成签到,获得积分0
1秒前
1秒前
K3完成签到,获得积分10
1秒前
hahasun完成签到,获得积分10
2秒前
过于喧嚣的孤独完成签到,获得积分10
2秒前
shin0324完成签到,获得积分10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
摆烂完成签到 ,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
晶格畸变完成签到,获得积分10
4秒前
mufcyang完成签到,获得积分10
4秒前
大林完成签到,获得积分10
4秒前
Muhi完成签到,获得积分10
4秒前
汉堡包应助YF采纳,获得10
5秒前
Survive完成签到,获得积分10
5秒前
情怀应助yy采纳,获得10
5秒前
贵贵完成签到,获得积分10
6秒前
CipherSage应助蔡6705采纳,获得10
6秒前
lhcshuang发布了新的文献求助10
7秒前
陈富贵完成签到 ,获得积分10
8秒前
TanXu完成签到 ,获得积分10
8秒前
南冥完成签到 ,获得积分10
9秒前
无私的芹应助狂野忆文采纳,获得10
9秒前
所所应助狂野忆文采纳,获得10
9秒前
研友_VZG7GZ应助狂野忆文采纳,获得10
9秒前
斯文败类应助狂野忆文采纳,获得10
9秒前
无花果应助狂野忆文采纳,获得10
9秒前
上官若男应助狂野忆文采纳,获得10
9秒前
赘婿应助狂野忆文采纳,获得10
9秒前
顾矜应助狂野忆文采纳,获得10
9秒前
情怀应助狂野忆文采纳,获得10
9秒前
10秒前
10秒前
光亮若翠完成签到,获得积分10
11秒前
Atopos完成签到,获得积分10
12秒前
CAOHOU应助小鱼女侠采纳,获得10
12秒前
平常星星完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027