已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TUSR-Net: Triple Unfolding Single Image Dehazing With Self-Regularization and Dual Feature to Pixel Attention

计算机科学 人工智能 像素 特征(语言学) 正规化(语言学) 图像(数学) 模式识别(心理学) 约束(计算机辅助设计) 计算机视觉 利用 数学 哲学 语言学 几何学 计算机安全
作者
Xibin Song,Dingfu Zhou,Wei Li,Yuchao Dai,Zhelun Shen,Liangjun Zhang,Hongdong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1231-1244 被引量:1
标识
DOI:10.1109/tip.2023.3234701
摘要

Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenlee完成签到,获得积分10
刚刚
3秒前
Junyi完成签到 ,获得积分10
4秒前
涂山发布了新的文献求助10
6秒前
larder完成签到 ,获得积分10
7秒前
DE2022发布了新的文献求助10
9秒前
Lmyznl完成签到 ,获得积分10
10秒前
11秒前
12秒前
科研发布了新的文献求助10
14秒前
啧啧完成签到,获得积分20
15秒前
文艺的凝冬完成签到,获得积分10
16秒前
17秒前
HEIKU应助DE2022采纳,获得10
18秒前
涂山完成签到,获得积分20
20秒前
Nine关注了科研通微信公众号
22秒前
蓝色的船应助完美的海秋采纳,获得10
22秒前
科研完成签到,获得积分20
23秒前
铁马冰河完成签到,获得积分10
25秒前
科研通AI2S应助草莓屁屁采纳,获得10
26秒前
27秒前
ls完成签到 ,获得积分10
27秒前
李健的粉丝团团长应助111采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
充电宝应助磬筱采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
30秒前
orixero应助科研通管家采纳,获得10
30秒前
Cassie应助DE2022采纳,获得10
30秒前
31秒前
Axs发布了新的文献求助200
31秒前
33秒前
十月二十发布了新的文献求助10
34秒前
xzy998应助fang采纳,获得10
34秒前
小乙大夫完成签到,获得积分10
35秒前
cuzn0423发布了新的文献求助10
35秒前
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244538
求助须知:如何正确求助?哪些是违规求助? 2888246
关于积分的说明 8251936
捐赠科研通 2556656
什么是DOI,文献DOI怎么找? 1385110
科研通“疑难数据库(出版商)”最低求助积分说明 650025
邀请新用户注册赠送积分活动 626177