A Spiking Neural Network With Adaptive Graph Convolution and LSTM for EEG-Based Brain-Computer Interfaces

计算机科学 脑-机接口 脑电图 人工智能 Spike(软件开发) 尖峰神经网络 图形 模式识别(心理学) 语音识别 人工神经网络 理论计算机科学 神经科学 生物 软件工程
作者
Peiliang Gong,Pengpai Wang,Yanqing Zhou,Daoqiang Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 1440-1450 被引量:5
标识
DOI:10.1109/tnsre.2023.3246989
摘要

Electroencephalography (EEG) signals classification is essential for the brain-computer interface (BCI). Recently, energy-efficient spiking neural networks (SNNs) have shown great potential in EEG analysis due to their ability to capture the complex dynamic properties of biological neurons while also processing stimulus information through precisely timed spike trains. However, most existing methods do not effectively mine the specific spatial topology of EEG channels and temporal dependencies of the encoded EEG spikes. Moreover, most are designed for specific BCI tasks and lack some generality. Hence, this study presents a novel SNN model with the customized spike-based adaptive graph convolution and long short-term memory (LSTM), termed SGLNet, for EEG-based BCIs. Specifically, we first adopt a learnable spike encoder to convert the raw EEG signals into spike trains. Then, we tailor the concepts of the multi-head adaptive graph convolution to SNN so that it can make good use of the intrinsic spatial topology information among distinct EEG channels. Finally, we design the spike-based LSTM units to further capture the temporal dependencies of the spikes. We evaluate our proposed model on two publicly available datasets from two representative fields of BCI, notably emotion recognition, and motor imagery decoding. The empirical evaluations demonstrate that SGLNet consistently outperforms existing state-of-the-art EEG classification algorithms. This work provides a new perspective for exploring high-performance SNNs for future BCIs with rich spatiotemporal dynamics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助汪宇采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
科目三应助mu采纳,获得10
3秒前
爱听歌小蚂蚁关注了科研通微信公众号
3秒前
一种信仰完成签到 ,获得积分10
3秒前
3秒前
顾矜应助淡淡的觅松采纳,获得10
4秒前
7秒前
mount完成签到,获得积分10
9秒前
斯文败类应助long采纳,获得10
10秒前
11秒前
Orange应助作业对不起采纳,获得10
12秒前
12秒前
15秒前
mu发布了新的文献求助10
16秒前
风清扬应助科研通管家采纳,获得30
17秒前
蒹葭苍苍应助科研通管家采纳,获得10
18秒前
风清扬应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
蒹葭苍苍应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
风清扬应助科研通管家采纳,获得30
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
风清扬应助科研通管家采纳,获得30
18秒前
小郭子应助科研通管家采纳,获得10
18秒前
小郭子应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
小郭子应助科研通管家采纳,获得10
18秒前
18秒前
小郭子应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896