Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things

计算机科学 强化学习 块链 马尔可夫决策过程 分布式计算 块(置换群论) 资源配置 能源消耗 人工智能 计算机网络 计算机安全 马尔可夫过程 生物 统计 数学 生态学 几何学
作者
Jiaxiang Zhang,Yiming Liu,Xiaoqi Qin,Xiaodong Xu,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (12): 10621-10635 被引量:19
标识
DOI:10.1109/jiot.2023.3241318
摘要

The fast development of mobile communication and artificial intelligence (AI) technologies greatly promotes the prosperity of the Internet of Things (IoT), where various types of IoT devices can perform more intelligent tasks. Considering the privacy leakage and limited communication resources, federated learning (FL) has emerged to enable devices to collaboratively train AI models based on their local data without raw data exchanges. Nevertheless, it is still challenging for guaranteeing any FL models to be effective due to the sluggish willingness of IoT devices and the model poisoning attacks in the FL. To address these issues, in this article, we introduce blockchain technology and propose a blockchain-based FL framework for supporting a trustworthy and reliable FL paradigm in IoT. In the proposed framework, we design a committee-based participant selection mechanism that selects the aggregate node and local model updates dynamically to construct the global model. Moreover, considering the tradeoff between the energy consumption and the convergence rate of the FL model, we perform the channel allocation, block size adjustment, and block producer selection jointly. Since the remaining resources, handling transactions, and channel conditions are dynamically varying (i.e., stochastic environment), we formulate the problem as a Markov decision process (MDP) and adopt a deep reinforcement learning (DRL)-based algorithm to solve it. The simulation results demonstrate the effectiveness of the proposed framework and show the superior performance of the DRL-based resource allocation algorithm compared with other baseline methods in terms of energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助jennifer采纳,获得10
刚刚
刚刚
lsjdsdb完成签到,获得积分10
刚刚
寻水的鱼完成签到,获得积分10
1秒前
叶博完成签到,获得积分10
1秒前
土书完成签到,获得积分10
1秒前
科研通AI2S应助erhgbw采纳,获得10
1秒前
情怀应助927采纳,获得10
1秒前
潘婷婷呀完成签到,获得积分10
2秒前
中和皇极完成签到,获得积分0
3秒前
sss完成签到,获得积分10
3秒前
在水一方应助SH采纳,获得10
3秒前
huhu发布了新的文献求助10
4秒前
Da完成签到,获得积分10
5秒前
6秒前
7秒前
小鱼爱吃肉应助叶博采纳,获得10
7秒前
7秒前
立里完成签到,获得积分10
7秒前
7秒前
yu完成签到,获得积分10
7秒前
AYEFORBIDER发布了新的文献求助20
8秒前
8秒前
风蓝发布了新的文献求助10
9秒前
9秒前
Kk完成签到,获得积分10
9秒前
bzhswlp完成签到,获得积分10
10秒前
ZMmmm完成签到,获得积分10
10秒前
sunlihao完成签到,获得积分10
10秒前
luu发布了新的文献求助10
11秒前
lilioa85完成签到,获得积分10
12秒前
叁金完成签到,获得积分10
12秒前
研友_VZG7GZ应助Z赵采纳,获得10
12秒前
13秒前
DBY完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助可耐的元容采纳,获得10
13秒前
快乐小狗发布了新的文献求助10
13秒前
aiyowei完成签到,获得积分10
14秒前
fengbao完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934083
关于积分的说明 8466490
捐赠科研通 2607435
什么是DOI,文献DOI怎么找? 1423733
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645297