Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things

计算机科学 强化学习 块链 马尔可夫决策过程 分布式计算 块(置换群论) 资源配置 能源消耗 人工智能 计算机网络 计算机安全 马尔可夫过程 生物 统计 数学 生态学 几何学
作者
Jiaxiang Zhang,Yiming Liu,Xiaoqi Qin,Xiaodong Xu,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (12): 10621-10635 被引量:19
标识
DOI:10.1109/jiot.2023.3241318
摘要

The fast development of mobile communication and artificial intelligence (AI) technologies greatly promotes the prosperity of the Internet of Things (IoT), where various types of IoT devices can perform more intelligent tasks. Considering the privacy leakage and limited communication resources, federated learning (FL) has emerged to enable devices to collaboratively train AI models based on their local data without raw data exchanges. Nevertheless, it is still challenging for guaranteeing any FL models to be effective due to the sluggish willingness of IoT devices and the model poisoning attacks in the FL. To address these issues, in this article, we introduce blockchain technology and propose a blockchain-based FL framework for supporting a trustworthy and reliable FL paradigm in IoT. In the proposed framework, we design a committee-based participant selection mechanism that selects the aggregate node and local model updates dynamically to construct the global model. Moreover, considering the tradeoff between the energy consumption and the convergence rate of the FL model, we perform the channel allocation, block size adjustment, and block producer selection jointly. Since the remaining resources, handling transactions, and channel conditions are dynamically varying (i.e., stochastic environment), we formulate the problem as a Markov decision process (MDP) and adopt a deep reinforcement learning (DRL)-based algorithm to solve it. The simulation results demonstrate the effectiveness of the proposed framework and show the superior performance of the DRL-based resource allocation algorithm compared with other baseline methods in terms of energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤浩宏完成签到,获得积分10
1秒前
1秒前
yudandan@CJLU发布了新的文献求助10
3秒前
Zkxxxx完成签到,获得积分10
3秒前
123完成签到,获得积分10
4秒前
大王卡完成签到,获得积分20
5秒前
5秒前
机智的紫丝完成签到,获得积分10
5秒前
TT发布了新的文献求助10
6秒前
田様应助啥,这都是啥采纳,获得10
9秒前
辛勤的孤容完成签到,获得积分10
10秒前
10秒前
10秒前
petrichor应助优美的跳跳糖采纳,获得1020
10秒前
科研通AI2S应助fleee采纳,获得10
10秒前
传奇3应助凝子老师采纳,获得10
11秒前
11秒前
11秒前
theverve完成签到,获得积分10
12秒前
ZJW完成签到,获得积分10
12秒前
完美世界应助bitahu采纳,获得10
12秒前
霸王龙完成签到,获得积分10
13秒前
15秒前
16秒前
YYJ25发布了新的文献求助10
16秒前
伯赏诗霜发布了新的文献求助50
17秒前
霸王龙发布了新的文献求助10
17秒前
ZJW发布了新的文献求助10
18秒前
ptjam完成签到 ,获得积分10
19秒前
miss发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
sun发布了新的文献求助10
23秒前
Ava应助土里刨星星的鱼采纳,获得10
25秒前
欢呼冰岚完成签到,获得积分10
25秒前
大王卡发布了新的文献求助30
25秒前
凝子老师发布了新的文献求助10
25秒前
优雅海雪发布了新的文献求助10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849