清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things

计算机科学 强化学习 块链 马尔可夫决策过程 分布式计算 块(置换群论) 资源配置 能源消耗 人工智能 计算机网络 计算机安全 马尔可夫过程 生物 统计 数学 生态学 几何学
作者
Jiaxiang Zhang,Yiming Liu,Xiaoqi Qin,Xiaodong Xu,Ping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (12): 10621-10635 被引量:22
标识
DOI:10.1109/jiot.2023.3241318
摘要

The fast development of mobile communication and artificial intelligence (AI) technologies greatly promotes the prosperity of the Internet of Things (IoT), where various types of IoT devices can perform more intelligent tasks. Considering the privacy leakage and limited communication resources, federated learning (FL) has emerged to enable devices to collaboratively train AI models based on their local data without raw data exchanges. Nevertheless, it is still challenging for guaranteeing any FL models to be effective due to the sluggish willingness of IoT devices and the model poisoning attacks in the FL. To address these issues, in this article, we introduce blockchain technology and propose a blockchain-based FL framework for supporting a trustworthy and reliable FL paradigm in IoT. In the proposed framework, we design a committee-based participant selection mechanism that selects the aggregate node and local model updates dynamically to construct the global model. Moreover, considering the tradeoff between the energy consumption and the convergence rate of the FL model, we perform the channel allocation, block size adjustment, and block producer selection jointly. Since the remaining resources, handling transactions, and channel conditions are dynamically varying (i.e., stochastic environment), we formulate the problem as a Markov decision process (MDP) and adopt a deep reinforcement learning (DRL)-based algorithm to solve it. The simulation results demonstrate the effectiveness of the proposed framework and show the superior performance of the DRL-based resource allocation algorithm compared with other baseline methods in terms of energy consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Marshall采纳,获得10
9秒前
zhangjianzeng完成签到 ,获得积分10
13秒前
woxinyouyou完成签到,获得积分10
14秒前
21秒前
赵一完成签到 ,获得积分10
22秒前
Marshall发布了新的文献求助10
27秒前
31秒前
sonicker完成签到 ,获得积分10
39秒前
dawnfrf完成签到,获得积分10
49秒前
ding应助jjyyy采纳,获得10
54秒前
JamesPei应助桃子e采纳,获得10
1分钟前
minjeong完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
桃子e发布了新的文献求助10
1分钟前
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
怕黑小伙发布了新的文献求助10
1分钟前
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
jjyyy发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助xiaoyu采纳,获得10
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
科研通AI6.1应助桃子e采纳,获得10
2分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
3分钟前
Edward发布了新的文献求助10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
zzhui完成签到,获得积分10
3分钟前
哈哈完成签到,获得积分10
4分钟前
4分钟前
xiaoyu发布了新的文献求助10
4分钟前
一颗困困豆耶完成签到,获得积分10
5分钟前
小马甲应助桃子e采纳,获得10
5分钟前
文艺的鲜花完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788937
求助须知:如何正确求助?哪些是违规求助? 5713498
关于积分的说明 15474025
捐赠科研通 4916906
什么是DOI,文献DOI怎么找? 2646617
邀请新用户注册赠送积分活动 1594299
关于科研通互助平台的介绍 1548721