Going beyond fact-checking to fight health misinformation: A multi-level analysis of the Twitter response to health news stories

误传 可靠性 社会化媒体 互联网隐私 健康信息 健康传播 假新闻 心理学 公共关系 新闻媒体 广告 政治学 医疗保健 计算机科学 业务 万维网 计算机安全 法学
作者
B. Zhong
出处
期刊:International Journal of Information Management [Elsevier]
卷期号:70: 102626-102626 被引量:6
标识
DOI:10.1016/j.ijinfomgt.2023.102626
摘要

Health misinformation has become an unfortunate truism of social media platforms, where lies could spread faster than truth. Despite considerable work devoted to suppressing fake news, health misinformation, including low-quality health news, persists and even increases in recent years. One promising approach to fighting bad information is studying the temporal and sentiment effects of health news stories and how they are discussed and disseminated on social media platforms like Twitter. As part of the effort of searching for innovative ways to fight health misinformation, this study analyzes a dataset of more than 1600 objectively and independently reviewed health news stories published over a 10-year span and nearly 50,000 Twitter posts responding to them. Specifically, it examines the source credibility of health news circulated on Twitter and the temporal, sentiment features of the tweets containing or responding to the health news reports. The results show that health news stories that are rated low by experts are discussed more, persist longer, and produce stronger sentiments than highly rated ones in the tweetosphere. However, the highly rated stories retained a fresh interest in the form of new tweets for a longer period. An in-depth understanding of the characteristics of health news distribution and discussion is the first step toward mitigating the surge of health misinformation. The findings provide insights into understanding the mechanism of health information dissemination on social media and practical implications to fight and mitigate health misinformation on digital media platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava发布了新的文献求助10
3秒前
3秒前
SciGPT应助李李采纳,获得10
4秒前
4秒前
Enchanted完成签到 ,获得积分10
5秒前
柠檬小lin发布了新的文献求助10
6秒前
苹果煎饼发布了新的文献求助10
6秒前
张张完成签到,获得积分10
7秒前
7秒前
Fifisheep发布了新的文献求助10
9秒前
10秒前
10秒前
乐乐乐乐完成签到,获得积分10
11秒前
11秒前
11秒前
修仙应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
修仙应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
MorningStar应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
谦让若蕊发布了新的文献求助10
12秒前
12秒前
阿西吧完成签到 ,获得积分10
14秒前
15秒前
研友_LXOWx8发布了新的文献求助10
15秒前
16秒前
李健应助妮儿采纳,获得10
16秒前
16秒前
16秒前
17秒前
kittypapillon发布了新的文献求助10
18秒前
好久不见发布了新的文献求助10
18秒前
18秒前
无限安蕾完成签到,获得积分10
19秒前
Owen应助谦让若蕊采纳,获得10
20秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218048
求助须知:如何正确求助?哪些是违规求助? 2867358
关于积分的说明 8155912
捐赠科研通 2534277
什么是DOI,文献DOI怎么找? 1366843
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617922