医学
胸骨旁线
射血分数
心室
人工智能
分数(化学)
分割
人口
机器学习
心脏病学
内科学
计算机科学
心力衰竭
环境卫生
有机化学
化学
作者
Charitha D. Reddy,Leo Lopez,David Ouyang,James Zou,Bryan He
标识
DOI:10.1016/j.echo.2023.01.015
摘要
Significant interobserver and interstudy variability occurs for left ventricular (LV) functional indices despite standardization of measurement techniques. Artificial intelligence models trained on adult echocardiograms are not likely to be applicable to a pediatric population. We present EchoNet-Peds, a video-based deep learning algorithm, which matches human expert performance of LV segmentation and ejection fraction (EF).A large pediatric data set of 4,467 echocardiograms was used to develop EchoNet-Peds. EchoNet-Peds was trained on 80% of the data for segmentation of the left ventricle and estimation of LVEF. The remaining 20% was used to fine-tune and validate the algorithm.In both apical 4-chamber and parasternal short-axis views, EchoNet-Peds segments the left ventricle with a Dice similarity coefficient of 0.89. EchoNet-Peds estimates EF with a mean absolute error of 3.66% and can routinely identify pediatric patients with systolic dysfunction (area under the curve of 0.95). EchoNet-Peds was trained on pediatric echocardiograms and performed significantly better to estimate EF (P < .001) than an adult model applied to the same data.Accurate, rapid automation of EF assessment and recognition of systolic dysfunction in a pediatric population are feasible using EchoNet-Peds with the potential for far-reaching clinical impact. In addition, the first large pediatric data set of annotated echocardiograms is now publicly available for efforts to develop pediatric-specific artificial intelligence algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI