An Online Deep Reinforcement Learning-Based Order Recommendation Framework for Rider-Centered Food Delivery System

强化学习 马尔可夫决策过程 计算机科学 订单(交换) 搭便车问题 过程(计算) 推荐系统 排名(信息检索) 马尔可夫过程 人工智能 运筹学 机器学习 工程类 业务 经济 财务 公共物品 微观经济学 统计 数学 操作系统
作者
Xing Wang,Ling Wang,Chenxin Dong,Hao Ren,Ke Xing
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 5640-5654 被引量:7
标识
DOI:10.1109/tits.2023.3237580
摘要

As an important part of intelligent transportation systems, On-demand Food Delivery (OFD) becomes a prevalent logistics service in modern society. With the continuously increasing scale of transactions, rider-centered assignment manner is gaining more attraction than traditional platform-centered assignment among food delivery companies. However, problems such as dynamic arrivals of orders, uncertain rider behaviors and various false-negative feedbacks inhibit the platform to make a proper decision in the interaction process with riders. To address such issues, we propose an online Deep Reinforcement Learning-based Order Recommendation (DRLOR) framework to solve the decision-making problem in the scenario of OFD. The problem is modeled as a Markov Decision Process (MDP). The DRLOR framework mainly consists of three networks, i.e., the actor-critic network that learns an optimal order ranking policy at each interaction step, the rider behavior prediction network that predicts the grabbing behavior of riders and the feedback correlation network based on attention mechanism that identifies valid feedback information from false feedbacks and learns a high-dimensional state embedding to represent the states of riders. Extensive offline and online experiments are conducted on Meituan delivery platform and the results demonstrate that the proposed DRLOR framework can significantly shorten the length of interactions between riders and the platform, leading to a better experience of both riders and customers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Faye完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
乱咬人关注了科研通微信公众号
3秒前
4秒前
4秒前
5秒前
bluelu发布了新的文献求助10
5秒前
yang发布了新的文献求助10
5秒前
标致溪流发布了新的文献求助10
7秒前
7秒前
所所应助顺心的映梦采纳,获得10
7秒前
8秒前
8秒前
yr888完成签到,获得积分10
8秒前
Dan发布了新的文献求助10
9秒前
黑纸一张发布了新的文献求助100
10秒前
10秒前
万能图书馆应助勤恳幻丝采纳,获得10
10秒前
隐形曼青应助和光同尘采纳,获得10
11秒前
沉默水风发布了新的文献求助10
12秒前
yuefeng发布了新的文献求助10
12秒前
天天快乐应助HAHAHA采纳,获得10
14秒前
张爱学发布了新的文献求助10
14秒前
14秒前
袅袅发布了新的文献求助10
14秒前
香蕉觅云应助典雅的惜萱采纳,获得10
15秒前
赘婿应助暮光的加纳采纳,获得10
16秒前
Wink14551发布了新的文献求助10
16秒前
啊莲完成签到,获得积分10
16秒前
小白完成签到,获得积分10
16秒前
乱咬人发布了新的文献求助10
16秒前
20秒前
好吧不是发布了新的文献求助10
21秒前
22秒前
张爱学完成签到,获得积分10
22秒前
JamesPei应助YJ采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944