Further elevating the energy density of aqueous zinc-ion hybrid capacitors toward batteries through voltage-window-expansion engineering

电化学窗口 电容器 功率密度 材料科学 电化学 储能 电容 超级电容器 电解质 电压 阴极 化学工程 水溶液 纳米技术 光电子学 电气工程 化学 电极 离子电导率 功率(物理) 物理化学 热力学 物理 工程类
作者
Weiwei Zhang,Xiongfei Gao,Xiaoyan Yang,Tianmeng Zhang,Yahui Li,Jianfeng Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:460: 141824-141824 被引量:5
标识
DOI:10.1016/j.cej.2023.141824
摘要

Although increasing the voltage window should be more effective by square rewarding than the specific capacitance for enhancing the energy density of zinc-ion hybrid capacitors (ZIC), the lack of an ideal cathode has hindered its realization. Herein, Ti3C2Tx-PPy/Bi2S3 composite was fabricated through voltage-window-expansion engineering, where Ti3C2Tx layers were covered by a tremella-like network of PPy through hydrogen bonds (-NH···O- and -NH···F-), and then compounded with pseudocapacitive Bi2S3. Due to the redox reactions of Bi2S3 and PPy at low and high potentials, the working voltage window of AZIC-TPB//ZnSO4//Zn was elevated up to 2.1 V with low-cost electrolyte ZnSO4, exhibiting a high energy density comparable to that of batteries (269.09 Wh Kg−1 with a power density of 1564.73 W Kg−1). Even at a power density of 12947.15 W Kg−1, the energy density of AZIC kept as high as 107 Wh Kg−1, far exceeding the common level. Density functional theory (DFT) calculation demonstrated the obvious electron transfer between Ti3C2Tx and PPy (or Bi2S3) and advanced conductivity, which promoted the redox reaction and facilitate the charge transfer in the electrochemical process. The strategy of voltage-window-expansion engineering here can be further extended to aqueous energy storage devices, offering a viable path to enhancing energy density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
刚刚
李健的粉丝团团长应助zy采纳,获得10
1秒前
SiyuanYang发布了新的文献求助10
1秒前
1秒前
顾矜应助呜呜呜采纳,获得10
1秒前
清爽海云发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
H71000A完成签到 ,获得积分10
2秒前
fxd发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
兮颜完成签到,获得积分10
3秒前
哒丝萌德发布了新的文献求助10
3秒前
科研通AI6应助bloom采纳,获得10
3秒前
乐观紫霜发布了新的文献求助10
3秒前
zz发布了新的文献求助10
4秒前
sx发布了新的文献求助10
4秒前
HAI完成签到,获得积分10
4秒前
椰子水发布了新的文献求助10
4秒前
4秒前
4秒前
赤侯发布了新的文献求助10
4秒前
Jared应助Vicky采纳,获得10
4秒前
pp-doctor完成签到,获得积分10
5秒前
皮皮完成签到,获得积分10
5秒前
zhu发布了新的文献求助10
5秒前
我是老大应助戚薇采纳,获得10
5秒前
顺利毕业完成签到,获得积分10
5秒前
6秒前
alkali发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
方黎昕完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401