A Survey on Learning to Reject

正确性 计算机科学 校准 过度自信效应 人工智能 过程(计算) 低信心 机器学习 匹配(统计) 心理学 社会心理学 统计 算法 数学 操作系统
作者
Xu-Yao Zhang,Guo-Sen Xie,Xiuli Li,Tao Mei,Cheng‐Lin Liu
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (2): 185-215 被引量:26
标识
DOI:10.1109/jproc.2023.3238024
摘要

Learning to reject is a special kind of self-awareness (the ability to know what you do not know), which is an essential factor for humans to become smarter. Although machine intelligence has become very accurate nowadays, it lacks such kind of self-awareness and usually acts as omniscient, resulting in overconfident errors. This article presents a comprehensive overview of this topic from three perspectives: confidence, calibration, and discrimination. Confidence is an important measurement for the reliability of model predictions. Rejection can be realized by setting thresholds on confidence. However, most models, especially modern deep neural networks, are usually overconfident. Therefore, calibration is a process to ensure confidence matching the actual likelihood of correctness, including two approaches: post-calibration and self-calibration. Calibration reflects the global characteristic of confidence, and the local distinguishing property of confidence is also important. In light of this, discrimination focuses on the performance of accepting positive samples while rejecting negative samples. As a binary classification problem, the challenge of discrimination comes from the missing and nonrepresentativeness of the negative data. Three discrimination tasks are comprehensively analyzed and discussed: failure rejection, unknown rejection, and fake rejection. By rejecting failures, the risk could be controlled especially for mission-critical applications. By rejecting unknowns, the awareness of the knowledge blind zone would be enhanced. By rejecting fakes, security and privacy could be protected. We provide a general taxonomy, organization, and discussion of the methods for solving these problems, which are studied separately in the literature. The connections between different approaches and future directions that are worth further investigation are also presented. With a discriminative and calibrated confidence, learning to reject will let the decision-making process be more practical, reliable, and secure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助321采纳,获得10
刚刚
研友_Z6Qrbn完成签到,获得积分10
刚刚
刚刚
Keira完成签到,获得积分10
刚刚
好多西红柿呀完成签到,获得积分10
1秒前
尊敬寒松完成签到 ,获得积分10
1秒前
Doreen完成签到,获得积分10
2秒前
江南之南完成签到 ,获得积分10
2秒前
挖掘机完成签到,获得积分10
3秒前
英俊的铭应助QQ采纳,获得10
3秒前
失眠煎饼完成签到,获得积分10
3秒前
压缩完成签到 ,获得积分10
3秒前
3秒前
昏睡的蟠桃应助xuejie采纳,获得30
4秒前
列奥维登发布了新的文献求助10
4秒前
元元发布了新的文献求助10
4秒前
Xiebro完成签到 ,获得积分10
5秒前
nater4ver完成签到,获得积分10
5秒前
二猫完成签到,获得积分10
5秒前
5秒前
阿维里奥完成签到,获得积分20
6秒前
科研通AI2S应助伊雪儿采纳,获得10
6秒前
hhhi应助伊雪儿采纳,获得10
6秒前
LC完成签到 ,获得积分10
6秒前
忐忑的远山完成签到,获得积分10
6秒前
鳄鱼蛋发布了新的文献求助10
7秒前
dow发布了新的文献求助10
7秒前
7秒前
刻苦的安白完成签到,获得积分10
7秒前
7秒前
u深度完成签到 ,获得积分10
8秒前
Atom完成签到,获得积分10
9秒前
尉迟三颜发布了新的文献求助10
9秒前
酱啊油完成签到,获得积分10
9秒前
ZR14124完成签到,获得积分10
10秒前
Miss67完成签到,获得积分10
10秒前
zdl完成签到,获得积分10
10秒前
11秒前
11秒前
南城花开完成签到 ,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259