A Survey on Learning to Reject

正确性 计算机科学 校准 过度自信效应 人工智能 过程(计算) 低信心 机器学习 匹配(统计) 心理学 社会心理学 统计 算法 数学 操作系统
作者
Xu-Yao Zhang,Guo-Sen Xie,Xiuli Li,Tao Mei,Cheng‐Lin Liu
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (2): 185-215 被引量:26
标识
DOI:10.1109/jproc.2023.3238024
摘要

Learning to reject is a special kind of self-awareness (the ability to know what you do not know), which is an essential factor for humans to become smarter. Although machine intelligence has become very accurate nowadays, it lacks such kind of self-awareness and usually acts as omniscient, resulting in overconfident errors. This article presents a comprehensive overview of this topic from three perspectives: confidence, calibration, and discrimination. Confidence is an important measurement for the reliability of model predictions. Rejection can be realized by setting thresholds on confidence. However, most models, especially modern deep neural networks, are usually overconfident. Therefore, calibration is a process to ensure confidence matching the actual likelihood of correctness, including two approaches: post-calibration and self-calibration. Calibration reflects the global characteristic of confidence, and the local distinguishing property of confidence is also important. In light of this, discrimination focuses on the performance of accepting positive samples while rejecting negative samples. As a binary classification problem, the challenge of discrimination comes from the missing and nonrepresentativeness of the negative data. Three discrimination tasks are comprehensively analyzed and discussed: failure rejection, unknown rejection, and fake rejection. By rejecting failures, the risk could be controlled especially for mission-critical applications. By rejecting unknowns, the awareness of the knowledge blind zone would be enhanced. By rejecting fakes, security and privacy could be protected. We provide a general taxonomy, organization, and discussion of the methods for solving these problems, which are studied separately in the literature. The connections between different approaches and future directions that are worth further investigation are also presented. With a discriminative and calibrated confidence, learning to reject will let the decision-making process be more practical, reliable, and secure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卢文强完成签到,获得积分10
刚刚
白开水发布了新的文献求助10
1秒前
忧虑的向日葵完成签到,获得积分10
1秒前
深情安青应助yyyl采纳,获得10
1秒前
Orange应助平常的如风采纳,获得30
1秒前
2秒前
学术纣王应助郑佳欣采纳,获得10
2秒前
shirleeyeahe发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
luoshiyi完成签到,获得积分10
3秒前
SCO完成签到,获得积分10
3秒前
3秒前
3秒前
yiyi发布了新的文献求助10
4秒前
温暖的紫真应助安静柚子采纳,获得10
4秒前
谢守峰发布了新的文献求助10
4秒前
4秒前
赵鑫宇完成签到,获得积分10
4秒前
给钱谢谢发布了新的文献求助10
4秒前
Ava应助123456qi采纳,获得10
5秒前
SR完成签到,获得积分10
5秒前
5秒前
5秒前
顾矜应助姿姿采纳,获得10
5秒前
科目三应助梅竹采纳,获得10
6秒前
曹志毅发布了新的文献求助20
6秒前
one发布了新的文献求助10
6秒前
wang完成签到,获得积分10
6秒前
Hilda007应助vivre223采纳,获得10
7秒前
mochen完成签到,获得积分10
7秒前
科目三应助没有昵称采纳,获得10
7秒前
西西完成签到,获得积分10
7秒前
朱妙彤发布了新的文献求助10
7秒前
赵鑫宇发布了新的文献求助10
8秒前
8秒前
烟花应助鲤鱼灵寒采纳,获得10
8秒前
盒子完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853