A Survey on Learning to Reject

正确性 计算机科学 校准 过度自信效应 人工智能 过程(计算) 低信心 机器学习 匹配(统计) 心理学 社会心理学 统计 算法 数学 操作系统
作者
Xu-Yao Zhang,Guo-Sen Xie,Xiuli Li,Tao Mei,Cheng‐Lin Liu
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (2): 185-215 被引量:26
标识
DOI:10.1109/jproc.2023.3238024
摘要

Learning to reject is a special kind of self-awareness (the ability to know what you do not know), which is an essential factor for humans to become smarter. Although machine intelligence has become very accurate nowadays, it lacks such kind of self-awareness and usually acts as omniscient, resulting in overconfident errors. This article presents a comprehensive overview of this topic from three perspectives: confidence, calibration, and discrimination. Confidence is an important measurement for the reliability of model predictions. Rejection can be realized by setting thresholds on confidence. However, most models, especially modern deep neural networks, are usually overconfident. Therefore, calibration is a process to ensure confidence matching the actual likelihood of correctness, including two approaches: post-calibration and self-calibration. Calibration reflects the global characteristic of confidence, and the local distinguishing property of confidence is also important. In light of this, discrimination focuses on the performance of accepting positive samples while rejecting negative samples. As a binary classification problem, the challenge of discrimination comes from the missing and nonrepresentativeness of the negative data. Three discrimination tasks are comprehensively analyzed and discussed: failure rejection, unknown rejection, and fake rejection. By rejecting failures, the risk could be controlled especially for mission-critical applications. By rejecting unknowns, the awareness of the knowledge blind zone would be enhanced. By rejecting fakes, security and privacy could be protected. We provide a general taxonomy, organization, and discussion of the methods for solving these problems, which are studied separately in the literature. The connections between different approaches and future directions that are worth further investigation are also presented. With a discriminative and calibrated confidence, learning to reject will let the decision-making process be more practical, reliable, and secure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Akitten完成签到,获得积分10
2秒前
星之所在应助guojingjing采纳,获得10
3秒前
刻苦的黑米完成签到,获得积分10
3秒前
英俊的铭应助lyp采纳,获得10
3秒前
善学以致用应助xh采纳,获得10
3秒前
失眠宫苴发布了新的文献求助10
4秒前
4秒前
研友_85YNe8完成签到,获得积分10
4秒前
yy发布了新的文献求助10
5秒前
7秒前
jery完成签到,获得积分10
7秒前
9秒前
zino完成签到,获得积分10
10秒前
11秒前
12秒前
Yoyo完成签到 ,获得积分10
12秒前
开心的傲蕾完成签到,获得积分10
12秒前
xfxx完成签到,获得积分10
12秒前
李健的粉丝团团长应助zyy采纳,获得10
13秒前
JamesPei应助安静的半蕾采纳,获得10
14秒前
华仔应助粱夏烟采纳,获得10
14秒前
14秒前
SHAO发布了新的文献求助10
15秒前
15秒前
lyp发布了新的文献求助10
15秒前
王五一完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
18秒前
酷波er应助紧张的惜梦采纳,获得10
19秒前
波谷发布了新的文献求助10
19秒前
19秒前
Dr_JennyZ完成签到,获得积分10
19秒前
笔至梦花完成签到 ,获得积分10
20秒前
周小鱼完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901