A Survey on Learning to Reject

正确性 计算机科学 校准 过度自信效应 人工智能 过程(计算) 低信心 机器学习 匹配(统计) 心理学 社会心理学 统计 算法 数学 操作系统
作者
Xu-Yao Zhang,Guo-Sen Xie,Xiuli Li,Tao Mei,Cheng‐Lin Liu
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (2): 185-215 被引量:26
标识
DOI:10.1109/jproc.2023.3238024
摘要

Learning to reject is a special kind of self-awareness (the ability to know what you do not know), which is an essential factor for humans to become smarter. Although machine intelligence has become very accurate nowadays, it lacks such kind of self-awareness and usually acts as omniscient, resulting in overconfident errors. This article presents a comprehensive overview of this topic from three perspectives: confidence, calibration, and discrimination. Confidence is an important measurement for the reliability of model predictions. Rejection can be realized by setting thresholds on confidence. However, most models, especially modern deep neural networks, are usually overconfident. Therefore, calibration is a process to ensure confidence matching the actual likelihood of correctness, including two approaches: post-calibration and self-calibration. Calibration reflects the global characteristic of confidence, and the local distinguishing property of confidence is also important. In light of this, discrimination focuses on the performance of accepting positive samples while rejecting negative samples. As a binary classification problem, the challenge of discrimination comes from the missing and nonrepresentativeness of the negative data. Three discrimination tasks are comprehensively analyzed and discussed: failure rejection, unknown rejection, and fake rejection. By rejecting failures, the risk could be controlled especially for mission-critical applications. By rejecting unknowns, the awareness of the knowledge blind zone would be enhanced. By rejecting fakes, security and privacy could be protected. We provide a general taxonomy, organization, and discussion of the methods for solving these problems, which are studied separately in the literature. The connections between different approaches and future directions that are worth further investigation are also presented. With a discriminative and calibrated confidence, learning to reject will let the decision-making process be more practical, reliable, and secure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lilivite应助zhuhaot采纳,获得50
2秒前
视野胤发布了新的文献求助10
3秒前
田様应助soey0319采纳,获得10
5秒前
5秒前
9秒前
别管我了完成签到,获得积分10
9秒前
别管我了发布了新的文献求助30
13秒前
方hh完成签到,获得积分10
16秒前
风中听枫完成签到 ,获得积分10
17秒前
Junsir完成签到,获得积分10
19秒前
许家星发布了新的文献求助10
19秒前
20秒前
22秒前
momo发布了新的文献求助10
23秒前
成就的秋完成签到,获得积分10
24秒前
小林完成签到 ,获得积分10
24秒前
小二郎应助端庄的小蝴蝶采纳,获得10
25秒前
25秒前
huzhen完成签到,获得积分20
28秒前
九思发布了新的文献求助10
29秒前
叶燕完成签到 ,获得积分10
29秒前
wancheng_发布了新的文献求助10
31秒前
酷波er应助许家星采纳,获得10
31秒前
大木头完成签到 ,获得积分10
38秒前
雷马完成签到,获得积分10
39秒前
神仙彩虹鱼完成签到 ,获得积分10
40秒前
Sg完成签到,获得积分10
43秒前
43秒前
叮叮车完成签到 ,获得积分10
43秒前
潇潇发布了新的文献求助10
44秒前
45秒前
48秒前
领导范儿应助笨笨的蜡烛采纳,获得10
49秒前
49秒前
隐形曼青应助liu123采纳,获得10
50秒前
yhao发布了新的文献求助10
50秒前
Akim应助风中听枫采纳,获得10
51秒前
科研通AI5应助功不唐捐采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536403
求助须知:如何正确求助?哪些是违规求助? 3971754
关于积分的说明 12304783
捐赠科研通 3638509
什么是DOI,文献DOI怎么找? 2003268
邀请新用户注册赠送积分活动 1038759
科研通“疑难数据库(出版商)”最低求助积分说明 928184