A Survey on Learning to Reject

正确性 计算机科学 校准 过度自信效应 人工智能 过程(计算) 低信心 机器学习 人工神经网络 匹配(统计) 自信 心理学 社会心理学 统计 算法 数学 操作系统
作者
Xu-Yao Zhang,Guo-Sen Xie,Xiuli Li,Tao Mei,Cheng‐Lin Liu
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (2): 185-215 被引量:14
标识
DOI:10.1109/jproc.2023.3238024
摘要

Learning to reject is a special kind of self-awareness (the ability to know what you do not know), which is an essential factor for humans to become smarter. Although machine intelligence has become very accurate nowadays, it lacks such kind of self-awareness and usually acts as omniscient, resulting in overconfident errors. This article presents a comprehensive overview of this topic from three perspectives: confidence, calibration, and discrimination. Confidence is an important measurement for the reliability of model predictions. Rejection can be realized by setting thresholds on confidence. However, most models, especially modern deep neural networks, are usually overconfident. Therefore, calibration is a process to ensure confidence matching the actual likelihood of correctness, including two approaches: post-calibration and self-calibration. Calibration reflects the global characteristic of confidence, and the local distinguishing property of confidence is also important. In light of this, discrimination focuses on the performance of accepting positive samples while rejecting negative samples. As a binary classification problem, the challenge of discrimination comes from the missing and nonrepresentativeness of the negative data. Three discrimination tasks are comprehensively analyzed and discussed: failure rejection, unknown rejection, and fake rejection. By rejecting failures, the risk could be controlled especially for mission-critical applications. By rejecting unknowns, the awareness of the knowledge blind zone would be enhanced. By rejecting fakes, security and privacy could be protected. We provide a general taxonomy, organization, and discussion of the methods for solving these problems, which are studied separately in the literature. The connections between different approaches and future directions that are worth further investigation are also presented. With a discriminative and calibrated confidence, learning to reject will let the decision-making process be more practical, reliable, and secure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王能能完成签到,获得积分10
1秒前
Yjh完成签到,获得积分10
1秒前
3秒前
炸鸡完成签到,获得积分10
4秒前
斗图不怕输完成签到,获得积分10
5秒前
JamesPei应助Mimi采纳,获得10
5秒前
5秒前
yowgo完成签到,获得积分10
7秒前
8秒前
王77应助阳佟半仙采纳,获得30
8秒前
白苏发布了新的文献求助10
10秒前
11秒前
wanci应助何书易采纳,获得10
14秒前
情怀应助陌路孤星采纳,获得10
14秒前
酷波er应助研友_VZGvVn采纳,获得10
15秒前
15秒前
jbz发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助wwwwwnnnnn采纳,获得10
16秒前
桐桐应助Www采纳,获得10
16秒前
17秒前
hehe应助珂珂儿采纳,获得10
17秒前
18秒前
汉堡包应助YYH采纳,获得10
19秒前
19秒前
20秒前
许木子发布了新的文献求助10
20秒前
辛勤溪流完成签到,获得积分10
21秒前
芝芝霉霉完成签到,获得积分10
21秒前
DEFEND发布了新的文献求助10
22秒前
ninini发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
25秒前
26秒前
酷波er应助侠客采纳,获得10
26秒前
SCIER完成签到,获得积分10
27秒前
Mimi发布了新的文献求助10
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323