Comparative Analysis of SLAM Algorithms for Mechanical LiDAR and Solid-State LiDAR

激光雷达 测距 遥感 移动机器人 计算机科学 里程计 同时定位和映射 人工智能 机器人 地理 电信
作者
Baoding Zhou,Doudou Xie,Shoubin Chen,Haoquan Mo,Chunyu Li,Qingquan Li
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 5325-5338 被引量:18
标识
DOI:10.1109/jsen.2023.3238077
摘要

With the advancement of light detection and ranging (LiDAR) technology in recent years, various new types of LiDAR have emerged, and the price of LiDAR equipment has gradually decreased. At present, low-cost solid-state LiDARs are gradually occupying the market. To evaluate the performance of two LIDARs for simultaneous localization and mapping. This study investigated the application of solid-state LiDAR and mechanical LiDAR in localization and mapping systems and comparatively analyzed their advantages and disadvantages. We selected some classic open-source algorithms [such as LiDAR odometry and mapping (A-LOAM)] to evaluate the performance of mechanical LiDAR and solid-state LiDAR in localization. The experimental data are adopted from some representative open-source data (such as KITTI data) and real data collected by Shenzhen University. The results showed that the localization accuracy of solid-state LiDAR was lower than that of mechanical LiDAR when the mobile robot moved to the corner and faced square to the wall at close range. Moreover, the localization accuracy of solid-state LiDAR was the same as or even higher than that of mechanical LiDAR when the mobile robots had small changes in the field of view (FOV) and the mobile robot moved along straight lines or other tracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大力夜雪完成签到,获得积分10
1秒前
缥缈哈密瓜完成签到,获得积分10
2秒前
Yiii发布了新的文献求助10
3秒前
3秒前
我是老大应助大迷糊采纳,获得10
3秒前
吕培森发布了新的文献求助10
3秒前
lalala应助清脆依白采纳,获得10
3秒前
3秒前
Akim应助幸福的丑采纳,获得30
4秒前
shjcold完成签到,获得积分10
4秒前
rover完成签到 ,获得积分10
4秒前
6秒前
婉孝发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
上官小怡发布了新的文献求助10
8秒前
Anima应助哔哩哔哩采纳,获得10
8秒前
8秒前
澎鱼盐发布了新的文献求助10
8秒前
9秒前
以水为师完成签到 ,获得积分10
9秒前
lyy给lyy的求助进行了留言
9秒前
我不理解完成签到,获得积分10
9秒前
FashionBoy应助帆布鞋采纳,获得10
10秒前
希望天下0贩的0应助玄音采纳,获得10
10秒前
任寒松发布了新的文献求助10
10秒前
比卜不发布了新的文献求助10
10秒前
完美完成签到,获得积分10
11秒前
机灵的夜梦完成签到 ,获得积分10
11秒前
11秒前
烟花应助橘落采纳,获得10
11秒前
11秒前
11秒前
12秒前
WoeL.Aug.11发布了新的文献求助10
12秒前
纷雪发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369