Rapid forecasting of hydrogen concentration based on a multilayer CNN-LSTM network

人工神经网络 保险丝(电气) 瞬态(计算机编程) 卷积神经网络 计算机科学 平均绝对百分比误差 近似误差 响应时间 平均绝对误差 实时计算 生物系统 算法 均方误差 模式识别(心理学) 人工智能 统计 数学 工程类 电气工程 物理 计算机图形学(图像) 量子力学 生物 操作系统
作者
Yangyang Shi,Shenghua Ye,Yangong Zheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (6): 065101-065101 被引量:3
标识
DOI:10.1088/1361-6501/acbdb5
摘要

Abstract Gas sensors with rapid response are desirable in many safety applications. Reducing the response time of gas sensors is a challenging task. Computing a part of the initial temporal signals of gas sensors based on neural networks is an effective and powerful method for forecasting sensors’ output. To rapidly and robust forecasting hydrogen concentration, a sensor array is composed of a temperature and humidity sensor, and two hydrogen sensors. A neural network combined with convolutional neural networks and long-short-term memory networks is proposed to fuse temporal signals of the sensor array to forecast hydrogen concentrations. The structure of the neural network is optimized by increasing its depth. For the optimal neural network, the lowest mean absolute percent error is about 12.8% by computing initial 30 s of transient signals within 300–400 s response curves, the predicted mean absolute error is 1158 ppm in the testing range of 18 000 ppm. When the time span of initial transient signals of the sensor array increase to 150 s for the computing, the mean absolute percent error decreases to 5.7%. This study verifies the potential and effectiveness of the neural network for concentration forecasting by computing the temporal signals of the sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香精发布了新的文献求助10
刚刚
Jasper应助hu采纳,获得10
刚刚
CodeCraft应助依古比古采纳,获得10
1秒前
领导范儿应助蒸馒头争气采纳,获得10
1秒前
派大星完成签到 ,获得积分10
1秒前
golf完成签到,获得积分10
2秒前
聪慧芷巧应助SmileLin采纳,获得10
3秒前
3秒前
魔幻秋烟完成签到 ,获得积分10
4秒前
4秒前
4秒前
所所应助MoriZhang采纳,获得10
5秒前
汉堡包应助111采纳,获得10
5秒前
6秒前
大魁发布了新的文献求助10
6秒前
7秒前
8秒前
NexusExplorer应助echo采纳,获得10
8秒前
读者完成签到,获得积分10
8秒前
丘比特应助刘安娜采纳,获得10
8秒前
8秒前
lijing123发布了新的文献求助10
8秒前
9秒前
9秒前
小管完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
福子完成签到,获得积分10
11秒前
帅的一批完成签到,获得积分10
11秒前
猫科动物完成签到,获得积分10
12秒前
12秒前
依古比古发布了新的文献求助10
12秒前
13秒前
AMMMMM完成签到,获得积分10
13秒前
执着涵菱发布了新的文献求助10
13秒前
13秒前
aaaaa发布了新的文献求助10
14秒前
14秒前
Ryoma完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198