A Machine Learning Approach to Developing an Accurate Prediction of Maximal Heart Rate During Exercise Testing in Apparently Healthy Adults

均方误差 Lasso(编程语言) 数学 统计 皮尔逊积矩相关系数 随机森林 医学 心率 支持向量机 人工智能 机器学习 血压 计算机科学 内科学 万维网
作者
Larsen Cundrič,Zoran Bosnić,Leonard A. Kaminsky,Jonathan Myers,James E. Peterman,Vidan Marković,Ross Arena,Dejana Popović
出处
期刊:Journal of Cardiopulmonary Rehabilitation and Prevention [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (5): 377-383
标识
DOI:10.1097/hcr.0000000000000786
摘要

Maximal heart rate (HR max ) continues to be an important measure of adequate effort during an exercise test. The aim of this study was to improve the accuracy of HR max prediction using a machine learning (ML) approach.We used a sample from the Fitness Registry of the Importance of Exercise National Database, which included 17 325 apparently healthy individuals (81% males) who performed a maximal cardiopulmonary exercise test. Two standard formulas for HR max prediction were tested: Formula1 = 220 - age (yr), root-mean-squared error (RMSE) 21.9, relative root-mean-squared error (RRMSE) 1.1; and Formula2 = 209.3 - 0.72 × age (yr), RMSE 22.7 and RRMSE 1.1. For ML model prediction, we used age, weight, height, resting HR, and systolic and diastolic blood pressure. The following ML algorithms to predict HR max were applied: lasso regression (LR), neural networks (NN), support vector machine (SVM) and random forests (RF). An evaluation was performed using cross-validation and by computing the RMSE and RRMSE, Pearson correlation, and Bland-Altman plots. The best predictive model was explained with Shapley Additive Explanations (SHAP).The HR max for the cohort was 162 ± 20 bpm. All ML models improved HR max prediction and reduced RMSE and RRMSE compared with Formula1 (LR: 20.2%, NN: 20.4%, SVM: 22.2%, and RF: 24.7%). The predictions of all algorithms significantly correlated with HR max ( r = 0.49, 0.51, 0.54, 0.57, respectively; P < .001). Bland-Altman analysis demonstrated lower bias and 95% CI for all ML models in comparison with standard equations. The SHAP explanation showed a high impact of all selected variables.Machine learning, particularly the RF model, improved prediction of HR max using readily available measures. This approach should be considered for clinical application to refine HR max prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yun完成签到 ,获得积分10
1秒前
3秒前
leo0531完成签到 ,获得积分10
3秒前
4秒前
海盗船长发布了新的文献求助10
4秒前
8秒前
海盗船长发布了新的文献求助10
8秒前
yongp发布了新的文献求助10
9秒前
努力加油煤老八完成签到 ,获得积分0
10秒前
11秒前
11秒前
黄景滨完成签到 ,获得积分10
13秒前
14秒前
旋光活性完成签到 ,获得积分10
14秒前
叮咚发布了新的文献求助10
16秒前
大气的寇完成签到,获得积分10
17秒前
盐焗鱼丸完成签到 ,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
ahh完成签到 ,获得积分10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
20秒前
Orange应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
个性的荆应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
个性的荆应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
隐形曼青应助ganhykk采纳,获得10
30秒前
紧张的幻桃完成签到 ,获得积分10
30秒前
吃了就会胖完成签到 ,获得积分10
30秒前
王柯予发布了新的文献求助10
33秒前
乐情完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652825
求助须知:如何正确求助?哪些是违规求助? 4788443
关于积分的说明 15061739
捐赠科研通 4811262
什么是DOI,文献DOI怎么找? 2573820
邀请新用户注册赠送积分活动 1529599
关于科研通互助平台的介绍 1488335