A Machine Learning Approach to Developing an Accurate Prediction of Maximal Heart Rate During Exercise Testing in Apparently Healthy Adults

均方误差 Lasso(编程语言) 数学 统计 皮尔逊积矩相关系数 随机森林 医学 平均绝对误差 心率 支持向量机 人工智能 机器学习 血压 计算机科学 内科学 万维网
作者
Larsen Cundrič,Zoran Bosnić,Leonard A. Kaminsky,Jonathan Myers,James E. Peterman,Vidan Marković,Ross Arena,Dejana Popović
出处
期刊:Journal of Cardiopulmonary Rehabilitation and Prevention [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (5): 377-383
标识
DOI:10.1097/hcr.0000000000000786
摘要

Maximal heart rate (HR max ) continues to be an important measure of adequate effort during an exercise test. The aim of this study was to improve the accuracy of HR max prediction using a machine learning (ML) approach.We used a sample from the Fitness Registry of the Importance of Exercise National Database, which included 17 325 apparently healthy individuals (81% males) who performed a maximal cardiopulmonary exercise test. Two standard formulas for HR max prediction were tested: Formula1 = 220 - age (yr), root-mean-squared error (RMSE) 21.9, relative root-mean-squared error (RRMSE) 1.1; and Formula2 = 209.3 - 0.72 × age (yr), RMSE 22.7 and RRMSE 1.1. For ML model prediction, we used age, weight, height, resting HR, and systolic and diastolic blood pressure. The following ML algorithms to predict HR max were applied: lasso regression (LR), neural networks (NN), support vector machine (SVM) and random forests (RF). An evaluation was performed using cross-validation and by computing the RMSE and RRMSE, Pearson correlation, and Bland-Altman plots. The best predictive model was explained with Shapley Additive Explanations (SHAP).The HR max for the cohort was 162 ± 20 bpm. All ML models improved HR max prediction and reduced RMSE and RRMSE compared with Formula1 (LR: 20.2%, NN: 20.4%, SVM: 22.2%, and RF: 24.7%). The predictions of all algorithms significantly correlated with HR max ( r = 0.49, 0.51, 0.54, 0.57, respectively; P < .001). Bland-Altman analysis demonstrated lower bias and 95% CI for all ML models in comparison with standard equations. The SHAP explanation showed a high impact of all selected variables.Machine learning, particularly the RF model, improved prediction of HR max using readily available measures. This approach should be considered for clinical application to refine HR max prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you翅膀的鱼完成签到 ,获得积分10
1秒前
安静的颖应助CBWKEYANTONG123采纳,获得10
1秒前
2秒前
所所应助春枝闻言采纳,获得10
2秒前
子车茗应助RickySong采纳,获得10
2秒前
2秒前
xiaodq完成签到,获得积分10
3秒前
Bolerlee完成签到,获得积分10
3秒前
4秒前
呐呐应助阿梦采纳,获得10
5秒前
jinjinjin完成签到 ,获得积分10
5秒前
5秒前
6秒前
希望天下0贩的0应助Crisp采纳,获得10
6秒前
yjn完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
妖娆完成签到,获得积分10
9秒前
9秒前
9秒前
今后应助欢呼的语柳采纳,获得10
10秒前
苗条的凝梦完成签到,获得积分10
10秒前
酷酷初之发布了新的文献求助10
10秒前
RTP发布了新的文献求助10
10秒前
10秒前
高大一一完成签到,获得积分10
11秒前
11秒前
在水一方应助微雨采纳,获得10
11秒前
11秒前
12秒前
方赫然应助chenkaixin采纳,获得10
13秒前
研友_诺发布了新的文献求助10
13秒前
王大锤完成签到,获得积分10
13秒前
CodeCraft应助1717采纳,获得10
14秒前
Owen应助czj采纳,获得10
15秒前
十一完成签到,获得积分20
15秒前
susu发布了新的文献求助10
15秒前
安静的颖应助个性莺采纳,获得10
16秒前
夜白应助ks采纳,获得10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259477
求助须知:如何正确求助?哪些是违规求助? 2901093
关于积分的说明 8313913
捐赠科研通 2570455
什么是DOI,文献DOI怎么找? 1396534
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631566