材料科学
超材料
微波食品加热
带宽(计算)
制作
陶瓷
参数化(大气建模)
小旋翼机
光电子学
机械工程
复合材料
计算机科学
光学
聚合物
物理
病理
工程类
共聚物
电信
替代医学
辐射传输
医学
计算机网络
作者
Yao Li,Wenqiang Yang,Shixiang Zhou,Hui Mei,Yang Li,Konstantinos G. Dassios,Ralf Riedel,Chidong Liu,Laifei Cheng,Litong Zhang
出处
期刊:Acta Materialia
[Elsevier]
日期:2023-02-26
卷期号:249: 118803-118803
被引量:20
标识
DOI:10.1016/j.actamat.2023.118803
摘要
Conventional experientialism-inspired and intuition-inspired research on microwave-absorbing (MA) materials appears to lack efficiency. The present work aims to establish a scalable parametrization-design methodology for multifunctional coupled MA metamaterials involving up-front theoretical calculation and simulation predictions followed by experimental verification. A top-down parametrization-design methodology is proposed herein, which relies on the utilization of polymer-derived ceramics (PDCs) with flexible electromagnetic tunability as substrate materials, combined with tunable electromagnetic response via mathematical modeling of triply-periodic-minimal-surfaces shellular structures. In the process, preferred structural configuration and orientation are screened with actual requirements while final fabrication in a single step is enabled by 3D printing technology. The effect of structural configuration and orientation on electromagnetic response is scrutinized and a novel optimization method for deterministic high-temperature MA properties is proposed. As-fabricated [111]-oriented Gyroid shellular MA metamaterials exhibit superior overall performance in the X-Ku band with wide-temperature adaptability. At room temperature, the minimal reflection loss (RLmin) value is –58.05 dB, effective absorbing bandwidth (EAB) with RL ≤ –10 dB reaches 6.11 GHz, and the specific strength reaches 65.20 MPa/(g/cm3) at the ultralow density of 0.550 g/cm3. RLmin improves to –72.38 dB at 100 °C while EAB increases to 6.77 GHz at 300 °C and retains 5.60 GHz at 600 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI