SCADA系统
异常检测
鉴别器
计算机科学
马氏距离
数据挖掘
风力发电
多元统计
人工智能
时间序列
EWMA图表
异常(物理)
机器学习
工程类
过程(计算)
控制图
凝聚态物理
物理
探测器
电信
电气工程
操作系统
作者
Minglei Zheng,Junfeng Man,Dian Wang,Yanan Chen,Qianqian Li,Yong Liu
标识
DOI:10.1016/j.ress.2023.109235
摘要
The maintenance cost and unplanned downtime caused by faults are an important part of the operation cost of wind turbines. Supervisory control and data acquisition (SCADA) data is a multivariate time series (MTS) for monitoring the status of wind turbines, in which anomaly patterns may indicate potential faults. The existing anomaly detection methods can neither extract and process pattern information in MTS stably, nor make reasonable use of a small amount of valuable labeled data. In this paper, we propose an end-to-end semi-supervised anomaly detection model including reconstruction model, prediction model and auxiliary discriminator, with a joint objective function. Combining reconstruction model and prediction model, the unsupervised model can effectively extract the inter-variable correlation and temporal dependence of MTS data. Further, using the semi-supervised auxiliary discriminator based on adversarial training, the proposed model can integrate expert knowledge to incrementally upgrade performance from unsupervised to supervised level. Our evaluation experiments are conducted on a public server dataset and a real-world wind turbine SCADA dataset. The results show that the F1-score of unsupervised model can exceed the several state-of-the-art baseline methods by 3.86% and 2.89%, and the F1-score can be increased to 98.60% and 98.30% after using the auxiliary discriminator. © 2016 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Global Science and Technology Forum Pte Ltd
科研通智能强力驱动
Strongly Powered by AbleSci AI