Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥利奥爱好者完成签到,获得积分10
1秒前
不说再见完成签到,获得积分10
1秒前
3秒前
4秒前
4秒前
啊吼吼发布了新的文献求助10
4秒前
斯文的秋蝶关注了科研通微信公众号
4秒前
longer发布了新的文献求助10
5秒前
阿坝完成签到,获得积分20
5秒前
5秒前
斯文败类应助居居采纳,获得10
6秒前
Criminology34举报科研助理求助涉嫌违规
7秒前
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
852应助阿坝采纳,获得10
9秒前
玖玖完成签到,获得积分10
11秒前
111111发布了新的文献求助10
11秒前
小菜狗发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
天天快乐应助123采纳,获得10
13秒前
14秒前
orixero应助玖玖采纳,获得10
14秒前
无情的绮彤完成签到,获得积分10
14秒前
14秒前
仁爱听露发布了新的文献求助10
16秒前
cc完成签到 ,获得积分10
17秒前
18秒前
居居发布了新的文献求助10
18秒前
瞅一瞅给瞅一瞅的求助进行了留言
19秒前
19秒前
cyx发布了新的文献求助10
19秒前
林天翼发布了新的文献求助10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
Orange应助hakei采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323