亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的萝发布了新的文献求助10
2秒前
酷酷紫易完成签到,获得积分10
2秒前
Baylin发布了新的文献求助10
2秒前
4秒前
章鱼完成签到,获得积分10
4秒前
酷酷紫易发布了新的文献求助30
7秒前
大个应助时尚的萝采纳,获得10
8秒前
16秒前
wingmay完成签到,获得积分20
21秒前
酷酷玉兰完成签到 ,获得积分10
27秒前
29秒前
34秒前
大模型应助烛夜黎采纳,获得10
37秒前
Criminology34应助Iris采纳,获得10
39秒前
闲鱼耶鹤完成签到 ,获得积分10
42秒前
43秒前
47秒前
烛夜黎发布了新的文献求助10
48秒前
拉长的从灵完成签到,获得积分10
48秒前
顺熙发布了新的文献求助10
52秒前
等风来LYY完成签到,获得积分10
58秒前
顺熙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
yf完成签到,获得积分10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
Nature应助激昂的吐司采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
cherish完成签到,获得积分10
2分钟前
silence完成签到 ,获得积分10
2分钟前
2分钟前
幽默孤菱发布了新的文献求助10
2分钟前
2分钟前
善学以致用应助ceeray23采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664182
求助须知:如何正确求助?哪些是违规求助? 4858397
关于积分的说明 15107254
捐赠科研通 4822630
什么是DOI,文献DOI怎么找? 2581600
邀请新用户注册赠送积分活动 1535799
关于科研通互助平台的介绍 1494030