Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周才完成签到 ,获得积分10
2秒前
2秒前
刘威完成签到,获得积分10
3秒前
3秒前
Ron发布了新的文献求助10
4秒前
专一的忆雪给专一的忆雪的求助进行了留言
4秒前
5秒前
chen完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
午凌二完成签到,获得积分10
7秒前
Orange应助Thestar采纳,获得10
7秒前
7秒前
老刀发布了新的文献求助10
7秒前
众人皆醉我独醒完成签到,获得积分10
7秒前
失眠亦寒发布了新的文献求助10
8秒前
8秒前
杨杨完成签到,获得积分10
9秒前
9秒前
等待盼山完成签到,获得积分20
9秒前
10秒前
上官若男应助迷路的寄风采纳,获得10
10秒前
陈慕枫发布了新的文献求助10
11秒前
11秒前
顾矜应助开朗艳一采纳,获得10
12秒前
可爱的函函应助麦穗采纳,获得10
12秒前
哈哈哈完成签到,获得积分10
13秒前
彭于晏应助cherry采纳,获得10
13秒前
14秒前
易研学术发布了新的文献求助10
14秒前
123456789完成签到,获得积分10
14秒前
14秒前
zy发布了新的文献求助10
14秒前
15秒前
lawang发布了新的文献求助10
15秒前
无花果应助源西瓜采纳,获得10
16秒前
17秒前
陈慕枫完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716