Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
整点薯条发布了新的文献求助10
4秒前
浆糊完成签到 ,获得积分10
5秒前
Sun_Chen完成签到,获得积分10
5秒前
无私鹰发布了新的文献求助20
6秒前
yziy完成签到 ,获得积分10
7秒前
努力的学完成签到,获得积分10
8秒前
橙子完成签到 ,获得积分10
8秒前
叶子完成签到 ,获得积分10
8秒前
adx60发布了新的文献求助10
8秒前
lennon完成签到,获得积分10
9秒前
cici完成签到 ,获得积分10
10秒前
寒木春华完成签到,获得积分10
10秒前
11秒前
土豆完成签到 ,获得积分10
14秒前
liu发布了新的文献求助10
15秒前
NexusExplorer应助walker采纳,获得10
18秒前
feiyang完成签到,获得积分10
18秒前
18秒前
弥生完成签到,获得积分10
18秒前
许衍举完成签到,获得积分10
19秒前
曼曼完成签到 ,获得积分10
19秒前
19秒前
20秒前
田様应助无私鹰采纳,获得10
20秒前
自信夜春完成签到,获得积分10
20秒前
向浩完成签到,获得积分10
21秒前
超级幼旋应助111采纳,获得10
22秒前
22秒前
萤火虫完成签到,获得积分10
23秒前
23秒前
魔法师发布了新的文献求助10
23秒前
xh完成签到 ,获得积分10
25秒前
草字头发布了新的文献求助10
26秒前
Oracle发布了新的文献求助80
26秒前
zcw发布了新的文献求助10
26秒前
Akim应助Soleil采纳,获得10
27秒前
lyl完成签到,获得积分10
27秒前
28秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378995
求助须知:如何正确求助?哪些是违规求助? 4503456
关于积分的说明 14015772
捐赠科研通 4412144
什么是DOI,文献DOI怎么找? 2423708
邀请新用户注册赠送积分活动 1416600
关于科研通互助平台的介绍 1394111