Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:4
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NexusExplorer应助包容的幻梅采纳,获得30
1秒前
2秒前
2秒前
Morning发布了新的文献求助10
2秒前
dpp完成签到,获得积分20
3秒前
cat发布了新的文献求助10
3秒前
姚运龙完成签到,获得积分10
3秒前
Jasper应助lost采纳,获得10
3秒前
4秒前
zhaowenxian发布了新的文献求助10
4秒前
4秒前
YULIA完成签到,获得积分10
5秒前
5秒前
yz完成签到,获得积分10
5秒前
美女完成签到,获得积分10
5秒前
5秒前
Moihan完成签到,获得积分10
5秒前
音乐完成签到,获得积分10
5秒前
6秒前
忧郁绿兰完成签到,获得积分10
6秒前
huangyi发布了新的文献求助10
7秒前
7秒前
邓佳鑫Alan应助uniphoton采纳,获得10
7秒前
打打应助哭泣的金鱼采纳,获得10
7秒前
起风了发布了新的文献求助10
8秒前
灬乔完成签到 ,获得积分10
8秒前
yxy发布了新的文献求助10
8秒前
与光同晨发布了新的文献求助10
8秒前
9秒前
陶醉薯片完成签到,获得积分20
9秒前
smartbot完成签到,获得积分10
10秒前
请叫我风吹麦浪应助mi采纳,获得10
10秒前
10秒前
YHL发布了新的文献求助10
10秒前
su完成签到,获得积分10
10秒前
10秒前
自信富完成签到,获得积分10
11秒前
乖乖完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762