Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Georges-09发布了新的文献求助10
1秒前
柚子茶发布了新的文献求助10
2秒前
3秒前
sy193625发布了新的文献求助10
3秒前
4秒前
科研通AI6应助搞怪的大侠采纳,获得10
4秒前
赘婿应助LG采纳,获得20
5秒前
高翔发布了新的文献求助10
5秒前
5秒前
wuhan完成签到,获得积分10
6秒前
Lee发布了新的文献求助10
7秒前
7秒前
小吴同学完成签到,获得积分20
9秒前
还得学啊完成签到,获得积分10
9秒前
个性的荆应助one采纳,获得10
9秒前
10秒前
10秒前
肖肖完成签到,获得积分10
11秒前
JamesPei应助photodetectors采纳,获得10
11秒前
12秒前
13秒前
14秒前
Lee完成签到,获得积分10
14秒前
英俊的铭应助sy193625采纳,获得10
15秒前
15秒前
刀特左完成签到,获得积分10
16秒前
琳io发布了新的文献求助10
16秒前
柚子茶完成签到,获得积分10
17秒前
17秒前
CNS完成签到 ,获得积分10
17秒前
ikun发布了新的文献求助10
17秒前
kouxinyao完成签到 ,获得积分10
18秒前
鹤九完成签到,获得积分10
18秒前
无恙发布了新的文献求助10
19秒前
Jackson_Cheng完成签到,获得积分20
19秒前
20秒前
童0731完成签到,获得积分10
21秒前
22秒前
天上的大馅饼完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901