Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵路灯完成签到,获得积分10
刚刚
酷波er应助Aria采纳,获得10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
ll发布了新的文献求助10
5秒前
张宁宁发布了新的文献求助10
5秒前
善学以致用应助听风采纳,获得10
5秒前
huaner发布了新的文献求助10
5秒前
hn_zhx完成签到,获得积分10
6秒前
tfq200完成签到,获得积分10
6秒前
6秒前
落月铭发布了新的文献求助10
8秒前
8秒前
hn_zhx发布了新的文献求助10
8秒前
敏感的博超完成签到 ,获得积分10
9秒前
明芬发布了新的文献求助30
11秒前
11秒前
科研通AI6应助欢喜采纳,获得10
11秒前
屈先生完成签到,获得积分10
11秒前
asiya发布了新的文献求助10
12秒前
jiuwu发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
哈哈哈哈呵应助WangYC采纳,获得10
14秒前
共享精神应助黄钦清采纳,获得10
15秒前
17秒前
美丽妍发布了新的文献求助10
18秒前
小路完成签到,获得积分10
19秒前
20秒前
愉快半烟发布了新的文献求助10
20秒前
科研1完成签到,获得积分20
21秒前
倩Q发布了新的文献求助10
22秒前
22秒前
22秒前
梅子黄时雨完成签到,获得积分10
23秒前
YL完成签到 ,获得积分0
23秒前
今后应助一一采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488