Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hailey给Hailey的求助进行了留言
2秒前
SUDA发布了新的文献求助30
4秒前
粗心的凡阳完成签到,获得积分10
7秒前
WXM完成签到 ,获得积分0
8秒前
帅气善斓应助科研通管家采纳,获得10
10秒前
ccc应助科研通管家采纳,获得10
10秒前
翻个花生应助科研通管家采纳,获得10
10秒前
帅气善斓应助科研通管家采纳,获得10
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
11秒前
小乔应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Dean应助科研通管家采纳,获得50
11秒前
11秒前
科目三应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
叮叮当当完成签到,获得积分10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
ccc应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
KK应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
Lny应助科研通管家采纳,获得10
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
小青椒应助科研通管家采纳,获得50
12秒前
情怀应助SUDA采纳,获得10
13秒前
1sunpf完成签到,获得积分10
13秒前
spf完成签到,获得积分0
14秒前
学习鱼完成签到,获得积分10
15秒前
孙非完成签到,获得积分10
16秒前
背后书南完成签到,获得积分10
16秒前
NNi发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603567
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854346
捐赠科研通 4693603
什么是DOI,文献DOI怎么找? 2540859
邀请新用户注册赠送积分活动 1507072
关于科研通互助平台的介绍 1471806