已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distraction pattern classification and comparisons under different conditions in the full-touch HMI mode

分散注意力 任务(项目管理) 驾驶模拟器 计算机科学 模拟 心理学 工程类 认知心理学 系统工程
作者
Xia Zhao,Li Zhao,Chen Zhao,Chang Wang,Rui Fu
出处
期刊:Displays [Elsevier]
卷期号:78: 102413-102413 被引量:7
标识
DOI:10.1016/j.displa.2023.102413
摘要

Understanding driver distraction patterns is an important part of human–machine interaction (HMI), which is beneficial for the development of control strategies in human–machine co-driving systems. However, comparatively few studies have focused on driver distraction patterns. To address this issue, this study proposes a framework to characterize distraction patterns using glance behavior and manual behavior, and classifies distraction patterns into: aggressive, moderate, and conservative patterns based on real road experiments. Subsequently, differences in distraction behavior and effects on lateral vehicle control ability across distraction pattern groups, as well as distraction behavior differences exhibited by drivers in the same distraction pattern group under different conditions, are analyzed. Firstly, the results show that the aggressive distraction patterns have a smaller number of eyes-off-road (NoEOR) incidences but longer mean single eyes-off-road time (MSEORT), maximum single eyes-off-road time (MaxEORT) and a higher percentage of long eyes-off-road (PoLEOR) incidences than the other patterns. There are slight differences in the single eyes-off-road times (EORTs) between the conservative and moderate patterns and in the manual behavior for the aggressive and moderate distraction patterns. Secondly, the same distraction pattern exhibited by drivers for different road and secondary task conditions has differences in terms of the behavioral performance. Finally, there is few differences in the lateral motion of a vehicle with different distraction patterns. Surprisingly, the standard deviation of the steering wheel angle (SDSWA) is the smallest in the aggressive distraction pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi完成签到 ,获得积分20
1秒前
可研发布了新的文献求助10
3秒前
5秒前
Echo完成签到,获得积分10
6秒前
7秒前
学有所成完成签到,获得积分10
8秒前
雪雪儿完成签到,获得积分10
8秒前
wlscj应助jcy采纳,获得20
10秒前
11秒前
Echo发布了新的文献求助10
11秒前
12秒前
小二郎应助yunzheng采纳,获得10
12秒前
Yulanda完成签到,获得积分10
13秒前
xxx完成签到,获得积分10
14秒前
liulu完成签到 ,获得积分10
18秒前
王富贵发布了新的文献求助10
19秒前
19秒前
rainbowbaby发布了新的文献求助10
20秒前
20秒前
Z小姐完成签到 ,获得积分10
20秒前
FashionBoy应助279采纳,获得10
20秒前
英勇的梨愁完成签到 ,获得积分10
21秒前
21秒前
22秒前
23秒前
诚心的凛发布了新的文献求助10
23秒前
Ibuprofen发布了新的文献求助10
25秒前
4114发布了新的文献求助10
25秒前
大个应助zzg采纳,获得10
26秒前
26秒前
阿泽完成签到,获得积分10
26秒前
wx完成签到,获得积分10
28秒前
28秒前
29秒前
30秒前
yunzheng发布了新的文献求助10
30秒前
33秒前
华仔应助搞怪的紫雪采纳,获得10
34秒前
张静完成签到 ,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356