Automated tea quality identification based on deep convolutional neural networks and transfer learning

卷积神经网络 学习迁移 计算机科学 人工智能 深度学习 鉴定(生物学) 相似性(几何) 模式识别(心理学) 质量(理念) 机器学习 人工神经网络 集合(抽象数据类型) 图像(数学) 哲学 认识论 生物 植物 程序设计语言
作者
Cheng Zhang,Jin Wang,Guodong Lu,Shaomei Fei,Tao Zheng,Bincheng Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (4) 被引量:4
标识
DOI:10.1111/jfpe.14303
摘要

Abstract Different quality grades of tea tend to have a high degree of similarity in appearance. Traditional image‐based identification methods have limited effects, while complex deep learning architectures require much data and long‐term training. In this paper, two tea quality identification methods based on deep convolutional neural networks and transfer learning are proposed. Different types and quality of tea images are collected by a self‐designed computer vision system to form a data set, which is small‐scale and of high inter‐ and intraclass similarity. The first method uses three simplified convolutional neural network (CNN) models with different image input sizes to identify the quality of tea. The second method performs transfer learning to identify the tea quality by fine‐tuning the mature AlexNet and ResNet50 architecture. Classification performance and model complexity are measured and compared. The related application software is also developed. The results show that the performance of the CNN models and the transfer learning models are close, and both can achieve high identification accuracy. However, the complexity of the CNN models is two to three orders of magnitude lower than that of the transfer learning models. The study shows that deep CNNs and transfer learning have great potential to be rapid and effective methods for automated tea quality identification tasks with high inter‐ and intrasimilarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
2秒前
2秒前
2秒前
荷包蛋完成签到,获得积分10
3秒前
4秒前
4秒前
Akim应助他方世界采纳,获得10
6秒前
嘻嘻完成签到 ,获得积分10
6秒前
bacteria发布了新的文献求助10
7秒前
happiness发布了新的文献求助10
8秒前
九城发布了新的文献求助10
10秒前
飞快的东蒽完成签到,获得积分10
11秒前
Lucas应助aria采纳,获得10
11秒前
YuguangWu关注了科研通微信公众号
12秒前
13秒前
66完成签到 ,获得积分10
14秒前
wxxsx发布了新的文献求助10
14秒前
大个应助难过的豆芽采纳,获得10
15秒前
小波比完成签到 ,获得积分10
15秒前
顿顿必须看书完成签到,获得积分20
15秒前
16秒前
高镜涵发布了新的文献求助10
16秒前
晖晖shining完成签到 ,获得积分10
16秒前
bacteria完成签到,获得积分10
17秒前
CodeCraft应助开朗的仰采纳,获得10
17秒前
17秒前
oMayii完成签到 ,获得积分10
17秒前
大模型应助傻傻的凌寒采纳,获得10
18秒前
jhj完成签到,获得积分20
18秒前
传奇3应助平常的铸海采纳,获得10
19秒前
王酸菜完成签到 ,获得积分10
19秒前
大胆鞯完成签到 ,获得积分10
19秒前
19秒前
有脾气的番茄完成签到,获得积分10
20秒前
刘欣欢完成签到 ,获得积分10
20秒前
jhj发布了新的文献求助10
21秒前
FLANKS发布了新的文献求助10
22秒前
22秒前
Solitude发布了新的文献求助10
23秒前
m111发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598832
求助须知:如何正确求助?哪些是违规求助? 4684218
关于积分的说明 14834289
捐赠科研通 4664987
什么是DOI,文献DOI怎么找? 2537445
邀请新用户注册赠送积分活动 1504928
关于科研通互助平台的介绍 1470655