Automated tea quality identification based on deep convolutional neural networks and transfer learning

卷积神经网络 学习迁移 计算机科学 人工智能 深度学习 鉴定(生物学) 相似性(几何) 模式识别(心理学) 质量(理念) 机器学习 人工神经网络 集合(抽象数据类型) 图像(数学) 哲学 认识论 生物 植物 程序设计语言
作者
Cheng Zhang,Jin Wang,Guodong Lu,Shaomei Fei,Tao Zheng,Bincheng Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (4) 被引量:4
标识
DOI:10.1111/jfpe.14303
摘要

Abstract Different quality grades of tea tend to have a high degree of similarity in appearance. Traditional image‐based identification methods have limited effects, while complex deep learning architectures require much data and long‐term training. In this paper, two tea quality identification methods based on deep convolutional neural networks and transfer learning are proposed. Different types and quality of tea images are collected by a self‐designed computer vision system to form a data set, which is small‐scale and of high inter‐ and intraclass similarity. The first method uses three simplified convolutional neural network (CNN) models with different image input sizes to identify the quality of tea. The second method performs transfer learning to identify the tea quality by fine‐tuning the mature AlexNet and ResNet50 architecture. Classification performance and model complexity are measured and compared. The related application software is also developed. The results show that the performance of the CNN models and the transfer learning models are close, and both can achieve high identification accuracy. However, the complexity of the CNN models is two to three orders of magnitude lower than that of the transfer learning models. The study shows that deep CNNs and transfer learning have great potential to be rapid and effective methods for automated tea quality identification tasks with high inter‐ and intrasimilarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅玉玉完成签到,获得积分10
刚刚
俏皮火完成签到 ,获得积分10
刚刚
刚刚
沉默听芹完成签到,获得积分10
刚刚
lym完成签到,获得积分10
刚刚
陈肖楠完成签到,获得积分10
刚刚
山野桃饼完成签到,获得积分10
1秒前
ash完成签到,获得积分10
1秒前
1秒前
兴奋的天蓉完成签到 ,获得积分10
2秒前
zdnn完成签到,获得积分10
3秒前
孙友浩完成签到,获得积分10
3秒前
微光完成签到,获得积分10
3秒前
梅赛德斯奔驰完成签到,获得积分10
4秒前
舒先生完成签到,获得积分10
5秒前
曾建完成签到 ,获得积分10
6秒前
唐僧肉臊子面完成签到,获得积分10
6秒前
David完成签到,获得积分0
6秒前
可期完成签到,获得积分10
6秒前
文承龙发布了新的文献求助10
7秒前
Owen应助JC采纳,获得10
7秒前
风中黎昕完成签到 ,获得积分10
7秒前
Fiona完成签到,获得积分10
7秒前
迷路的含桃完成签到 ,获得积分10
7秒前
hhh完成签到,获得积分10
8秒前
特大包包完成签到,获得积分10
8秒前
面壁的章北海完成签到,获得积分10
9秒前
斯文败类应助houbinghua采纳,获得10
9秒前
wanci应助HCB1采纳,获得10
10秒前
WW完成签到,获得积分10
10秒前
DrCuiTianjin完成签到 ,获得积分0
10秒前
铁甲小杨完成签到,获得积分0
10秒前
陆aa完成签到 ,获得积分10
10秒前
llll完成签到,获得积分10
10秒前
kiyo_v完成签到,获得积分10
11秒前
大米完成签到,获得积分10
11秒前
研友_LXdbaL完成签到,获得积分10
12秒前
12秒前
正经大善人完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570943
求助须知:如何正确求助?哪些是违规求助? 3992327
关于积分的说明 12357387
捐赠科研通 3665133
什么是DOI,文献DOI怎么找? 2019936
邀请新用户注册赠送积分活动 1054342
科研通“疑难数据库(出版商)”最低求助积分说明 941891