Automated tea quality identification based on deep convolutional neural networks and transfer learning

卷积神经网络 学习迁移 计算机科学 人工智能 深度学习 鉴定(生物学) 相似性(几何) 模式识别(心理学) 质量(理念) 机器学习 人工神经网络 集合(抽象数据类型) 图像(数学) 哲学 认识论 生物 植物 程序设计语言
作者
Cheng Zhang,Jin Wang,Guodong Lu,Shaomei Fei,Tao Zheng,Bincheng Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (4) 被引量:4
标识
DOI:10.1111/jfpe.14303
摘要

Abstract Different quality grades of tea tend to have a high degree of similarity in appearance. Traditional image‐based identification methods have limited effects, while complex deep learning architectures require much data and long‐term training. In this paper, two tea quality identification methods based on deep convolutional neural networks and transfer learning are proposed. Different types and quality of tea images are collected by a self‐designed computer vision system to form a data set, which is small‐scale and of high inter‐ and intraclass similarity. The first method uses three simplified convolutional neural network (CNN) models with different image input sizes to identify the quality of tea. The second method performs transfer learning to identify the tea quality by fine‐tuning the mature AlexNet and ResNet50 architecture. Classification performance and model complexity are measured and compared. The related application software is also developed. The results show that the performance of the CNN models and the transfer learning models are close, and both can achieve high identification accuracy. However, the complexity of the CNN models is two to three orders of magnitude lower than that of the transfer learning models. The study shows that deep CNNs and transfer learning have great potential to be rapid and effective methods for automated tea quality identification tasks with high inter‐ and intrasimilarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
科研助手6应助gz采纳,获得10
4秒前
彭于晏应助gz采纳,获得10
4秒前
鱼与木头发布了新的文献求助10
5秒前
绿泡泡发布了新的文献求助10
6秒前
今后应助Transition采纳,获得10
8秒前
Chelry发布了新的文献求助10
8秒前
大大怪发布了新的文献求助10
9秒前
乐乐应助lina采纳,获得10
11秒前
12秒前
12秒前
gz完成签到,获得积分10
15秒前
哲别发布了新的文献求助10
16秒前
SciGPT应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
义气严青完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
25秒前
某某完成签到,获得积分20
27秒前
28秒前
Owen应助shore采纳,获得10
28秒前
小熊完成签到,获得积分10
29秒前
英姑应助丸子_2025000采纳,获得10
30秒前
yydragen应助rita_sun1969采纳,获得30
30秒前
可爱的函函应助大喵采纳,获得10
31秒前
35秒前
包李发布了新的文献求助10
35秒前
36秒前
打打应助自由的读书人采纳,获得10
40秒前
共享精神应助bbh采纳,获得10
41秒前
研友_VZG7GZ应助bbh采纳,获得10
41秒前
小小完成签到,获得积分10
41秒前
大喵发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190