Adaptive Kernel Kalman Filter

集合卡尔曼滤波器 卡尔曼滤波器 核(代数) 核自适应滤波器 变核密度估计 数学 核希尔伯特再生空间 不变扩展卡尔曼滤波器 分布的核嵌入 快速卡尔曼滤波 扩展卡尔曼滤波器 算法 核密度估计 概率密度函数 控制理论(社会学) 颗粒过滤器 核方法 计算机科学 滤波器(信号处理) 人工智能 希尔伯特空间 统计 支持向量机 滤波器设计 数学分析 离散数学 计算机视觉 估计员 控制(管理)
作者
Mengwei Sun,Mike E. Davies,Ian K. Proudler,James R. Hopgood
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 713-726 被引量:16
标识
DOI:10.1109/tsp.2023.3250829
摘要

Sequential Bayesian filters in non-linear dynamic systems require the recursive estimation of the predictive and posterior probability density function (pdf). This paper introduces a Bayesian filter called the adaptive kernel Kalman filter (AKKF). The AKKF approximates the arbitrary predictive and posterior pdf of hidden states using the kernel mean embedding (KME) in reproducing kernel Hilbert space (RKHS). In parallel with the KME, some particles in the data space are used to capture the properties of the dynamic system model. Specifically, particles are generated and updated in the data space. Moreover, the corresponding kernel weight means vector and covariance matrix associated with the particles' kernel feature mappings are predicted and updated in the RKHS based on the kernel Kalman rule (KKR). Simulation results are presented to confirm the improved performance of our approach with significantly reduced numbers of particles by comparing with the unscented Kalman filter (UKF), particle filter (PF), and Gaussian particle filter (GPF). For example, compared with the GPF, the AKKF provides around 50% logarithmic mean square error (LMSE) tracking performance improvement in the bearing-only tracking (BOT) system when using 50 particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
格格星完成签到,获得积分10
1秒前
jackish完成签到,获得积分10
1秒前
1秒前
1秒前
英姑应助温柔若采纳,获得10
1秒前
2秒前
熠熠完成签到,获得积分10
4秒前
wangping发布了新的文献求助10
4秒前
李爱国应助小豆芽儿采纳,获得10
4秒前
5秒前
5秒前
FFF完成签到,获得积分20
6秒前
学术小黄完成签到,获得积分10
6秒前
么系么系发布了新的文献求助10
6秒前
7秒前
小洪俊熙完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
SYLH应助di采纳,获得10
8秒前
8秒前
柒毛完成签到 ,获得积分10
9秒前
搜集达人应助tatata采纳,获得20
9秒前
英俊的铭应助诚c采纳,获得10
9秒前
兔子完成签到 ,获得积分10
9秒前
9秒前
苹果巧蕊完成签到 ,获得积分10
9秒前
脑洞疼应助SDS采纳,获得10
9秒前
JamesPei应助Guo采纳,获得20
10秒前
马保国123完成签到,获得积分10
10秒前
10秒前
10秒前
迷你的冰巧完成签到,获得积分10
10秒前
万能图书馆应助学术蝗虫采纳,获得10
11秒前
慕青应助aurora采纳,获得30
11秒前
Jasper应助满意的盼夏采纳,获得10
11秒前
yitang完成签到,获得积分10
13秒前
www完成签到,获得积分10
13秒前
zhenzhen发布了新的文献求助10
13秒前
飞羽发布了新的文献求助10
13秒前
江沅完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678