集合卡尔曼滤波器
卡尔曼滤波器
核(代数)
核自适应滤波器
变核密度估计
数学
核希尔伯特再生空间
不变扩展卡尔曼滤波器
分布的核嵌入
快速卡尔曼滤波
扩展卡尔曼滤波器
算法
核密度估计
概率密度函数
控制理论(社会学)
颗粒过滤器
核方法
计算机科学
滤波器(信号处理)
人工智能
希尔伯特空间
统计
支持向量机
滤波器设计
数学分析
离散数学
计算机视觉
估计员
控制(管理)
作者
Mengwei Sun,Mike E. Davies,Ian K. Proudler,James R. Hopgood
标识
DOI:10.1109/tsp.2023.3250829
摘要
Sequential Bayesian filters in non-linear dynamic systems require the recursive estimation of the predictive and posterior probability density function (pdf). This paper introduces a Bayesian filter called the adaptive kernel Kalman filter (AKKF). The AKKF approximates the arbitrary predictive and posterior pdf of hidden states using the kernel mean embedding (KME) in reproducing kernel Hilbert space (RKHS). In parallel with the KME, some particles in the data space are used to capture the properties of the dynamic system model. Specifically, particles are generated and updated in the data space. Moreover, the corresponding kernel weight means vector and covariance matrix associated with the particles' kernel feature mappings are predicted and updated in the RKHS based on the kernel Kalman rule (KKR). Simulation results are presented to confirm the improved performance of our approach with significantly reduced numbers of particles by comparing with the unscented Kalman filter (UKF), particle filter (PF), and Gaussian particle filter (GPF). For example, compared with the GPF, the AKKF provides around 50% logarithmic mean square error (LMSE) tracking performance improvement in the bearing-only tracking (BOT) system when using 50 particles.
科研通智能强力驱动
Strongly Powered by AbleSci AI