An Extended Bridge Weigh-in-Motion System without Vehicular Axles and Speed Detectors Using Nonnegative LASSO Regularization

动态称重 算法 工程类 探测器 计算机科学 控制理论(社会学) 模拟 结构工程 人工智能 电气工程 控制(管理)
作者
Chengjun Tan,Bin Zhang,Hua Zhao,Nasim Uddin,Hongjie Guo,Banfu Yan
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:28 (5) 被引量:1
标识
DOI:10.1061/jbenf2.beeng-5864
摘要

The bridge weigh-in-motion (BWIM) technique uses the instrumented bridge on a large scale to identify the axle weight of a passing vehicle. Vehicle configurations, e.g., axle number and wheelbase, are crucial for the BWIM system, which require additional axle detectors. Free of axle (FAD) sensors are often used to obtain vehicle information, but they are only suitable for specific bridge types, such as slab-girder bridges. The concept of a virtual-axle-based algorithm, without requiring axle detectors, has been developed, and the validity of this algorithm has been verified numerically and experimentally. However, this algorithm assumes the vehicle speed as a known input, indicating that additional speed sensors/devices are still required in the BWIM system. Using this virtual-axle-based algorithm in a field test, it is found that the identification accuracy of the BWIM system is sensitive to the vehicle speed, and it shows poor recognition of vehicle configuration. To improve the recognition accuracy and remove vehicle speed detectors from the BWIM system, an extended BWIM system is proposed using the regularization technique and iterative approach. Both vehicular virtual axles and speeds are assumed in this approach. An error function based on the measured responses and theoretical ones is built to evaluate these assumed vehicle configurations and speeds. The effectiveness of the proposed approach is verified by the field tests. The results show that the proposed approach can obtain high recognition accuracy, which is close to Moses’s algorithm using FAD sensors. Compared with the previous virtual-axle-based algorithm, the recognition accuracy and robustness of the proposed approach are greatly improved. The proposed approach is still challenged by real-world traffic because this paper only considers the case when a single vehicle passes over the bridge. Nevertheless, the proposed extended BWIM system shows potential practical applications as it can further reduce costs and be applicable to more bridge types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zzt采纳,获得10
1秒前
滴滴答答发布了新的文献求助10
1秒前
idrees完成签到,获得积分10
1秒前
Boyce完成签到,获得积分10
2秒前
2秒前
qi88完成签到 ,获得积分10
2秒前
云溪完成签到,获得积分10
3秒前
Jenny完成签到 ,获得积分10
3秒前
孔雀翎完成签到,获得积分10
3秒前
Big胆完成签到,获得积分10
4秒前
一顿鸡米花完成签到,获得积分10
4秒前
求助人员发布了新的文献求助100
5秒前
情怀应助ycy采纳,获得10
5秒前
kilin发布了新的文献求助10
5秒前
dd发布了新的文献求助10
6秒前
星际完成签到,获得积分10
6秒前
陈栋炜完成签到,获得积分10
8秒前
9秒前
海天完成签到,获得积分10
9秒前
无情的镜子完成签到,获得积分10
9秒前
今天是周六完成签到,获得积分10
9秒前
幸福的醉山完成签到,获得积分10
9秒前
机灵的胡萝卜完成签到,获得积分10
10秒前
CLZ完成签到 ,获得积分10
10秒前
Jiny完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
丘比特应助lujiao采纳,获得10
11秒前
YG完成签到,获得积分10
11秒前
浮游应助滴滴答答采纳,获得10
11秒前
浮游应助滴滴答答采纳,获得10
11秒前
浮游应助滴滴答答采纳,获得10
12秒前
浮游应助滴滴答答采纳,获得10
12秒前
neinei完成签到,获得积分10
12秒前
巫马沛春完成签到,获得积分10
12秒前
Mercury完成签到,获得积分10
12秒前
12秒前
12秒前
认真的一刀完成签到,获得积分0
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570