An Extended Bridge Weigh-in-Motion System without Vehicular Axles and Speed Detectors Using Nonnegative LASSO Regularization

动态称重 算法 工程类 探测器 计算机科学 控制理论(社会学) 模拟 结构工程 人工智能 电气工程 控制(管理)
作者
Chengjun Tan,Bin Zhang,Hua Zhao,Nasim Uddin,Hongjie Guo,Banfu Yan
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:28 (5) 被引量:1
标识
DOI:10.1061/jbenf2.beeng-5864
摘要

The bridge weigh-in-motion (BWIM) technique uses the instrumented bridge on a large scale to identify the axle weight of a passing vehicle. Vehicle configurations, e.g., axle number and wheelbase, are crucial for the BWIM system, which require additional axle detectors. Free of axle (FAD) sensors are often used to obtain vehicle information, but they are only suitable for specific bridge types, such as slab-girder bridges. The concept of a virtual-axle-based algorithm, without requiring axle detectors, has been developed, and the validity of this algorithm has been verified numerically and experimentally. However, this algorithm assumes the vehicle speed as a known input, indicating that additional speed sensors/devices are still required in the BWIM system. Using this virtual-axle-based algorithm in a field test, it is found that the identification accuracy of the BWIM system is sensitive to the vehicle speed, and it shows poor recognition of vehicle configuration. To improve the recognition accuracy and remove vehicle speed detectors from the BWIM system, an extended BWIM system is proposed using the regularization technique and iterative approach. Both vehicular virtual axles and speeds are assumed in this approach. An error function based on the measured responses and theoretical ones is built to evaluate these assumed vehicle configurations and speeds. The effectiveness of the proposed approach is verified by the field tests. The results show that the proposed approach can obtain high recognition accuracy, which is close to Moses’s algorithm using FAD sensors. Compared with the previous virtual-axle-based algorithm, the recognition accuracy and robustness of the proposed approach are greatly improved. The proposed approach is still challenged by real-world traffic because this paper only considers the case when a single vehicle passes over the bridge. Nevertheless, the proposed extended BWIM system shows potential practical applications as it can further reduce costs and be applicable to more bridge types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
1秒前
浅尝离白应助科研通管家采纳,获得30
1秒前
ccm应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
充电宝应助周而复始采纳,获得10
1秒前
2秒前
2秒前
小白发布了新的文献求助10
2秒前
LIU发布了新的文献求助20
2秒前
汉堡包应助ppwl采纳,获得10
2秒前
醉波发布了新的文献求助10
3秒前
Yunpeng Cai发布了新的文献求助10
4秒前
Stella发布了新的文献求助10
5秒前
希言完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
顾矜应助zxy采纳,获得10
9秒前
虚幻的又蓝完成签到,获得积分10
9秒前
快乐的冰巧完成签到,获得积分10
10秒前
10秒前
平凡的七月完成签到,获得积分10
10秒前
11秒前
hailiangzheng发布了新的文献求助10
11秒前
自然怜容发布了新的文献求助10
12秒前
Stella完成签到,获得积分10
12秒前
醉波完成签到,获得积分10
13秒前
issl发布了新的文献求助10
13秒前
张张发布了新的文献求助10
13秒前
醋溜企鹅完成签到,获得积分10
14秒前
甜蜜瑾瑜完成签到,获得积分20
14秒前
ycx7808发布了新的文献求助10
14秒前
ppwl发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821