亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and validation of a prognostic model based on ten signature cell cycle-related genes for early-stage lung squamous cell carcinoma

比例危险模型 列线图 细胞周期 肿瘤科 单变量 接收机工作特性 阶段(地层学) 内科学 基因签名 医学 生物信息学 计算生物学 基因 生物 癌症 多元统计 基因表达 计算机科学 机器学习 遗传学 古生物学
作者
Chengpeng Zhang,Yong Huang,Chen Fang,Yingkuan Liang,Dong Jiang,Jiaxi Li,Haitao Ma,Jiang Wei,Yu Feng
出处
期刊:Cancer Biomarkers [IOS Press]
卷期号:36 (4): 313-326 被引量:1
标识
DOI:10.3233/cbm-220227
摘要

We performed a bioinformatics analysis to screen for cell cycle-related differentially expressed genes (DEGs) and constructed a model for the prognostic prediction of patients with early-stage lung squamous cell carcinoma (LSCC). From a gene expression omnibus (GEO) database, the GSE157011 dataset was randomly divided into an internal training group and an internal testing group at a 1:1 ratio, and the GSE30219, GSE37745, GSE42127, and GSE73403 datasets were merged as the external validation group. We performed single-sample gene set enrichment analysis (ssGSEA), univariate Cox analysis, and difference analysis, and identified 372 cell cycle-related genes. Additionally, we combined LASSO/Cox regression analysis to construct a prognostic model. Then, patients were divided into high-risk and low-risk groups according to risk scores. The internal testing group, discovery set, and external verification set were used to assess model reliability. We used a nomogram to predict patient prognoses based on clinical features and risk values. Clinical relevance analysis and the Human Protein Atlas (HPA) database were used to verify signature gene expression. Ten cell cycle-related DEGs (EIF2B1, FSD1L, FSTL3, ORC3, HMMR, SETD6, PRELP, PIGW, HSD17B6, and GNG7) were identified and a model based on the internal training group constructed. From this, patients in the low-risk group had a higher survival rate when compared with the high-risk group. Time-dependent receiver operating characteristic (tROC) and Cox regression analyses showed the model was efficient and accurate. Clinical relevance analysis and the HPA database showed that DEGs were significantly dysregulated in LSCC tissue. Our model predicted the prognosis of early-stage LSCC patients and demonstrated potential applications for clinical decision-making and individualized therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
玖梦恨别离完成签到 ,获得积分10
13秒前
嘚嘚发布了新的文献求助10
16秒前
gordon完成签到,获得积分10
16秒前
华仔应助隐形的迎南采纳,获得10
18秒前
29秒前
30秒前
34秒前
37秒前
42秒前
Owen应助嘚嘚采纳,获得10
47秒前
53秒前
mylRalph发布了新的文献求助30
59秒前
斯文败类应助eve采纳,获得10
1分钟前
1分钟前
红白夹心升糖完成签到,获得积分10
1分钟前
星之茧完成签到,获得积分10
1分钟前
1分钟前
gordon发布了新的文献求助10
1分钟前
eve发布了新的文献求助10
1分钟前
章鱼完成签到,获得积分10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
饿之巨人发布了新的文献求助10
2分钟前
饿之巨人完成签到,获得积分10
2分钟前
DreamRunner0410完成签到 ,获得积分10
2分钟前
xxxx完成签到 ,获得积分10
2分钟前
陈泽豪完成签到 ,获得积分10
2分钟前
失眠的霸完成签到,获得积分10
2分钟前
Jasper应助失眠的霸采纳,获得10
2分钟前
akakns完成签到 ,获得积分10
2分钟前
别找了睡觉吧完成签到 ,获得积分10
2分钟前
2分钟前
shenghaowen完成签到,获得积分10
2分钟前
2分钟前
木子倪完成签到,获得积分10
2分钟前
嘚嘚发布了新的文献求助10
2分钟前
3分钟前
失眠的霸发布了新的文献求助10
3分钟前
斯文的访烟完成签到,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081931
关于积分的说明 9169860
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522781
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339