材料科学
微观结构
高熵合金
钝化
冶金
腐蚀
Laves相
激光器
粒度
相(物质)
晶界
合金
复合材料
金属间化合物
光学
物理
化学
有机化学
图层(电子)
作者
Peng Lyu,Haoming Yuan,Feiyu Ge,Tao Peng,Qi Gao,Siyang Guo,Qingfeng Guan,Haixia Liu,Jintong Guan,Xinlin Liu
标识
DOI:10.1016/j.matchar.2023.112784
摘要
In order to improve the properties of AlCoCrFeNiNbx (x = 0, 0.1, and 0.5) high-entropy alloys (HEAs), the microstructure of the AlCoCrFeNiNbx is regulated by laser remelting (LR). By testing the microstructure and properties of alloys before and after LR treatment,the results indicate that the original AlCoCrFeNiNbx alloys have typical dendritic morphology, and the addition of the Nb element promoted the formation of Laves phase. The grains were significantly refined after LR treatment, and the dense remelting layers with thicknesses ranging from 1200 μm to 1650 μm were formed on the surface of the alloys. In addition, the hardness and wear resistance of the alloys were improved with the increase of Nb content and LR treatment due to the combined effect of fine grain strengthening, solid solution strengthening, and the second phase strengthening. At the same time, the corrosion resistance of the alloys before and after LR treatment in 3.5 wt% NaCl solution was significantly improved by the stable Nb2O5 passivation film for Nb0 and Nb1 alloys.
科研通智能强力驱动
Strongly Powered by AbleSci AI