Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning

计算机科学 斯塔克伯格竞赛 激励 权力下放 块链 任务(项目管理) 资源配置 计算机安全 计算机网络 数学 数理经济学 管理 政治学 法学 经济 微观经济学
作者
Zhilin Wang,Qin Hu,Ruinian Li,Minghui Xu,Zehui Xiong
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 1536-1547 被引量:49
标识
DOI:10.1109/tpds.2023.3253604
摘要

Blockchain-based federated learning (BCFL) has recently gained tremendous attention because of its advantages, such as decentralization and privacy protection of raw data. However, there has been few studies focusing on the allocation of resources for the participated devices (i.e., clients) in the BCFL system. Especially, in the BCFL framework where the FL clients are also the blockchain miners, clients have to train the local models, broadcast the trained model updates to the blockchain network, and then perform mining to generate new blocks. Since each client has a limited amount of computing resources, the problem of allocating computing resources to training and mining needs to be carefully addressed. In this paper, we design an incentive mechanism to help the model owner (MO) (i.e., the BCFL task publisher) assign each client appropriate rewards for training and mining, and then the client will determine the amount of computing power to allocate for each subtask based on these rewards using the two-stage Stackelberg game. After analyzing the utilities of the MO and clients, we transform the game model into two optimization problems, which are sequentially solved to derive the optimal strategies for both the MO and clients. Further, considering the fact that local training related information of each client may not be known by others, we extend the game model with analytical solutions to the incomplete information scenario. Extensive experimental results demonstrate the validity of our proposed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枯叶蝶发布了新的文献求助10
刚刚
西番雅发布了新的文献求助10
刚刚
刚刚
1秒前
独享一个人的世界完成签到,获得积分10
2秒前
小黎完成签到 ,获得积分10
2秒前
刘小帅完成签到,获得积分10
2秒前
11111发布了新的文献求助10
3秒前
shmily发布了新的文献求助10
4秒前
QDs完成签到,获得积分10
4秒前
lhw发布了新的文献求助10
5秒前
干啥啥行完成签到,获得积分20
7秒前
隐形曼青应助11111采纳,获得10
7秒前
7秒前
美女完成签到,获得积分10
8秒前
8秒前
9秒前
包佳梁完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
852应助库里强采纳,获得10
12秒前
13秒前
14秒前
轩轩发布了新的文献求助10
15秒前
yanhebeilu应助欣喜的迎梦采纳,获得10
16秒前
JIAO完成签到,获得积分10
21秒前
23秒前
23秒前
11完成签到,获得积分10
24秒前
个性的南珍完成签到 ,获得积分10
24秒前
24秒前
Lucas应助Evan采纳,获得20
25秒前
搞怪南烟完成签到,获得积分10
25秒前
26秒前
羊羊完成签到 ,获得积分10
26秒前
cccyyy完成签到,获得积分10
27秒前
29秒前
29秒前
深情安青应助LSH970829采纳,获得10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304