Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning

计算机科学 斯塔克伯格竞赛 激励 权力下放 块链 任务(项目管理) 资源配置 计算机安全 计算机网络 政治学 数学 数理经济学 经济 微观经济学 管理 法学
作者
Zhilin Wang,Qin Hu,Ruinian Li,Minghui Xu,Zehui Xiong
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 1536-1547 被引量:52
标识
DOI:10.1109/tpds.2023.3253604
摘要

Blockchain-based federated learning (BCFL) has recently gained tremendous attention because of its advantages, such as decentralization and privacy protection of raw data. However, there has been few studies focusing on the allocation of resources for the participated devices (i.e., clients) in the BCFL system. Especially, in the BCFL framework where the FL clients are also the blockchain miners, clients have to train the local models, broadcast the trained model updates to the blockchain network, and then perform mining to generate new blocks. Since each client has a limited amount of computing resources, the problem of allocating computing resources to training and mining needs to be carefully addressed. In this paper, we design an incentive mechanism to help the model owner (MO) (i.e., the BCFL task publisher) assign each client appropriate rewards for training and mining, and then the client will determine the amount of computing power to allocate for each subtask based on these rewards using the two-stage Stackelberg game. After analyzing the utilities of the MO and clients, we transform the game model into two optimization problems, which are sequentially solved to derive the optimal strategies for both the MO and clients. Further, considering the fact that local training related information of each client may not be known by others, we extend the game model with analytical solutions to the incomplete information scenario. Extensive experimental results demonstrate the validity of our proposed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神楽完成签到,获得积分10
4秒前
5秒前
沉默清关注了科研通微信公众号
7秒前
香豆素完成签到 ,获得积分10
9秒前
哇哦哦完成签到 ,获得积分10
9秒前
waws发布了新的文献求助10
10秒前
漫若浮光完成签到,获得积分10
11秒前
KK完成签到,获得积分10
11秒前
隐形的冰兰给隐形的冰兰的求助进行了留言
12秒前
浮游应助飘逸灵煌采纳,获得10
13秒前
16秒前
stt完成签到 ,获得积分10
17秒前
大个应助山君采纳,获得10
18秒前
科研通AI6应助Jason采纳,获得10
19秒前
27完成签到 ,获得积分10
21秒前
22秒前
陈嘉绍发布了新的文献求助10
23秒前
朴实归尘完成签到,获得积分10
25秒前
跑掉关注了科研通微信公众号
26秒前
JTCatherine完成签到,获得积分10
26秒前
典雅的夜梦完成签到 ,获得积分10
26秒前
沉默清发布了新的文献求助10
28秒前
pangsichao完成签到,获得积分10
28秒前
紧张的惜梦完成签到,获得积分10
31秒前
赘婿应助Ra1n采纳,获得10
32秒前
小青椒应助ryt采纳,获得30
32秒前
饭神仙鱼完成签到,获得积分10
32秒前
33秒前
33秒前
luo发布了新的文献求助10
39秒前
41秒前
王昊发布了新的文献求助10
43秒前
李爱国应助ll采纳,获得10
44秒前
46秒前
48秒前
傲娇蜜蜂完成签到,获得积分10
49秒前
超级盼烟完成签到,获得积分10
49秒前
kangkang发布了新的文献求助30
51秒前
52秒前
53秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225665
求助须知:如何正确求助?哪些是违规求助? 4397339
关于积分的说明 13686262
捐赠科研通 4261822
什么是DOI,文献DOI怎么找? 2338760
邀请新用户注册赠送积分活动 1336137
关于科研通互助平台的介绍 1292067