Human Face Emotions Recognition from Thermal Images Using DenseNet

计算机科学 人工智能 面部识别系统 面部表情 厌恶 面子(社会学概念) 模式识别(心理学) 三维人脸识别 支持向量机 惊喜 人脸检测 计算机视觉 滤波器(信号处理) 愤怒 精神科 社会学 社会心理学 社会科学 心理学
作者
S. Babu Rajendra Prasad,Bolem Sai Chandana
出处
期刊:International journal of electrical and computer engineering systems [Faculty of Electrical Engineering, Computer Science and Information Technology Osijek]
卷期号:14 (2): 155-167
标识
DOI:10.32985/ijeces.14.2.5
摘要

In the current scenario face identification and recognition is an important technique in surveillance. The face is a necessary biometric in humans. Therefore face detection plays a major job in computer vision applications. Several face recognition and emotions classification approaches have been presented throughout the last few decades of research to improve the rate of face recognition for thermal pictures. However, in real-time, lighting conditions might change due to several factors, such as the different times of capture, weather, etc. Due to variations in lighting intensity, the performance of the facial expression recognition system is not good. This paper proposed a model for human thermal face detection and expression classification. Four main steps were involved in this research. Initially, the Difference of the Gaussian (DOG) filter is utilized to crop the input thermal images and then normalize the images using the median filter in pre-processing step. Then, Efficient Net is used for extracting features such as shape, location, and occurrences from thermal face images. After that, detect human faces utilized by the YOLOv4 technique to better emotions classification. Finally, classify the emotions on faces by using the DenseNet technique into seven emotions such as happy, sad, disgust, surprise, anger, fear, and neutral. The proposed method outperforms state-of-art techniques for face recognition on thermal pictures, and classifies the expressions, according to experimentations on the RGB-D-T database. The accuracy, precision, recall, and f1-score metrics will be utilized with the database to assess the efficacy of the proposed methodology. The proposed models achieve a high classification accuracy of 95.97% on the RGB-D-T database. Furthermore, the outcomes show good precision for various face recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内永绘里发布了新的文献求助10
刚刚
Lucas应助aa采纳,获得10
刚刚
刚刚
高歌猛进完成签到,获得积分10
2秒前
杳鸢应助Yilinna采纳,获得10
3秒前
3秒前
hhh完成签到,获得积分10
3秒前
小么小完成签到,获得积分10
3秒前
齐齐巴宾完成签到,获得积分0
5秒前
6秒前
6秒前
7秒前
大个应助shYnEss采纳,获得10
8秒前
8秒前
Hello应助咸鱼小武采纳,获得10
9秒前
小腻o发布了新的文献求助10
10秒前
研友_VZG7GZ应助现代小笼包采纳,获得10
10秒前
从容道罡发布了新的文献求助10
11秒前
美满的冬卉完成签到 ,获得积分10
11秒前
12秒前
12秒前
栗子发布了新的文献求助10
12秒前
内永绘里完成签到,获得积分20
15秒前
15秒前
ll发布了新的文献求助10
15秒前
lierking完成签到,获得积分10
16秒前
yy应助happystarr采纳,获得10
16秒前
顾矜应助温简采纳,获得10
17秒前
非对称转录完成签到,获得积分10
17秒前
sy发布了新的文献求助10
18秒前
小蘑菇应助美好斓采纳,获得10
19秒前
桑吉卓玛完成签到,获得积分20
21秒前
汉堡包应助dsdsd采纳,获得10
21秒前
didoo发布了新的文献求助10
21秒前
21秒前
李李完成签到 ,获得积分10
22秒前
23秒前
26秒前
28秒前
28秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222338
求助须知:如何正确求助?哪些是违规求助? 2870958
关于积分的说明 8173314
捐赠科研通 2537983
什么是DOI,文献DOI怎么找? 1370116
科研通“疑难数据库(出版商)”最低求助积分说明 645683
邀请新用户注册赠送积分活动 619507