Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches

变构调节 计算生物学 人工智能 结构生物学 计算机科学 药物发现 蛋白质动力学 机器学习 蛋白质结构 生物 生物信息学 生物化学
作者
Steve Agajanian,Mohammed Alshahrani,Fang Bai,Peng Tao,Gennady M. Verkhivker
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (5): 1413-1428 被引量:18
标识
DOI:10.1021/acs.jcim.2c01634
摘要

Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jujubemxw发布了新的文献求助10
2秒前
吗喽为您接诊完成签到,获得积分10
2秒前
乖乖发布了新的文献求助10
2秒前
3秒前
归tu发布了新的文献求助10
3秒前
kjding完成签到,获得积分10
5秒前
5秒前
7秒前
暴躁的黎云完成签到,获得积分10
7秒前
所所应助可靠的寒风采纳,获得10
8秒前
Cathy完成签到,获得积分10
9秒前
CodeCraft应助自觉的柜子采纳,获得10
9秒前
9秒前
Jasper应助熊11采纳,获得10
11秒前
11秒前
11秒前
无情的夏蓉完成签到,获得积分10
12秒前
钮卿完成签到 ,获得积分10
12秒前
13秒前
zjz发布了新的文献求助10
13秒前
14秒前
14秒前
bkagyin应助内向的大白采纳,获得10
15秒前
张先生完成签到 ,获得积分10
16秒前
16秒前
qqq发布了新的文献求助10
16秒前
归tu完成签到,获得积分20
18秒前
zxy完成签到,获得积分10
18秒前
wking完成签到,获得积分10
19秒前
19秒前
21秒前
jujubemxw完成签到,获得积分10
21秒前
若琳发布了新的文献求助10
21秒前
研友_841e4L完成签到,获得积分10
22秒前
小海豚完成签到 ,获得积分10
23秒前
23秒前
24秒前
SciGPT应助yuyu采纳,获得10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154407
求助须知:如何正确求助?哪些是违规求助? 2805321
关于积分的说明 7864166
捐赠科研通 2463472
什么是DOI,文献DOI怎么找? 1311341
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821