Building the Environmental Chemical-Protein Interaction Network (eCPIN): An Exposome-Wide Strategy for Bioactive Chemical Contaminant Identification

暴露的 鉴定(生物学) 生化工程 化学生物学 蛋白质组 计算生物学 化学 计算机科学 纳米技术 生物 生物化学 工程类 生态学 材料科学 遗传学
作者
Yufeng Gong,Diwen Yang,Holly Barrett,Jianxian Sun,Hui Peng
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (9): 3486-3495 被引量:10
标识
DOI:10.1021/acs.est.2c02751
摘要

Although advancements in nontargeted analysis have made it possible to detect hundreds of chemical contaminants in a single run, the current environmental toxicology approaches lag behind, precluding the transition from analytical chemistry efforts to health risk assessment. We herein highlighted a recently developed "top-down" bioanalytical method, protein Affinity Purification with Nontargeted Analysis (APNA), to screen for bioactive chemical contaminants at the "exposome-wide" level. To achieve this, a tagged functional protein is employed as a "bait" to directly isolate bioactive chemical contaminants from environmental mixtures, which are further identified by nontargeted analysis. Advantages of this protein-guided approach, including the discovery of new bioactive ligands as well as new protein targets for known chemical contaminants, were highlighted by several case studies. Encouraged by these successful applications, we further proposed a framework, i.e., the environmental Chemical-Protein Interaction Network (eCPIN), to construct a complete map of the 7 billion binary interactions between all chemical contaminants (>350,000) and human proteins (∼20,000) via APNA. The eCPIN could be established in three stages through strategically prioritizing the ∼20,000 human proteins, such as focusing on the 48 nuclear receptors (e.g., thyroid hormone receptors) in the first stage. The eCPIN will provide an unprecedented throughput for screening bioactive chemical contaminants at the exposome-wide level and facilitate the identification of molecular initiating events at the proteome-wide level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观以松发布了新的文献求助10
1秒前
gengxw完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
橘子味汽水完成签到 ,获得积分10
4秒前
edhyjdtdm发布了新的文献求助10
5秒前
言树发布了新的文献求助10
8秒前
迪丽热巴发布了新的文献求助10
9秒前
zzr完成签到,获得积分10
9秒前
浦肯野应助wms采纳,获得50
10秒前
11秒前
qin完成签到,获得积分10
11秒前
12秒前
善学以致用应助大魁采纳,获得10
12秒前
14秒前
烟花应助zzz采纳,获得10
15秒前
MOON驳回了劲秉应助
15秒前
15秒前
jck发布了新的文献求助10
15秒前
17秒前
8R60d8应助平常幼菱采纳,获得10
17秒前
zzr发布了新的文献求助10
18秒前
18秒前
迹K发布了新的文献求助10
18秒前
NexusExplorer应助浪漫得要死采纳,获得10
19秒前
19秒前
20秒前
20秒前
DreamMaker完成签到,获得积分10
21秒前
传奇3应助超级的友绿采纳,获得10
21秒前
CipherSage应助journey采纳,获得10
22秒前
玉米发布了新的文献求助10
24秒前
yar应助木瓜采纳,获得10
25秒前
27秒前
橙子发布了新的文献求助20
29秒前
思源应助edhyjdtdm采纳,获得10
30秒前
大方荷花发布了新的文献求助20
30秒前
30秒前
深情安青应助jck采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469956
求助须知:如何正确求助?哪些是违规求助? 3063190
关于积分的说明 9081720
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510860
邀请新用户注册赠送积分活动 698134
科研通“疑难数据库(出版商)”最低求助积分说明 698056