An Accurate and Intelligent Approach to Predicting the Power Device Fatigue Failure Process

过程(计算) 可靠性(半导体) 焊接 有限元法 采样(信号处理) 功率(物理) 计算机科学 可靠性工程 工程类 结构工程 材料科学 计算机视觉 操作系统 物理 滤波器(信号处理) 复合材料 量子力学
作者
Yi Liu,Lixin Jia,Laili Wang,Jianpeng Wang,Jin Zhang,Zhewei Zhang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:6
标识
DOI:10.1109/tpel.2023.3339618
摘要

It is significant to study power device package fatigue failure as it seriously affects the reliability of power system. Nevertheless, the research of power device failure process is insufficient. In this paper, an accurate and intelligent approach is proposed to predict the power device fatigue failure process with multiple fatigue sampling method (MFSM) and minimal component unit method (MCUM). MFSM is proposed to accurately build the power device lifetime model. It is accomplished through multiple sampling fatigue morphology evolution process of solder layers combined with the fatigue parameter. Morphology evolution is detected by scanning acoustic microscope (SAM) technology under accelerated lifetime test (ALT). The fatigue parameter is got through finite element analysis (FEA) by establishing each sampling geometry model. Then, the lifetime model is determined by their same failure area fraction ( F s ). In particular, digital image processing (DIP) is applied to detailly describe solder layer shapes which is also the key to building a real FEA geometry model. MCUM is utilized to complete the prediction of failure process, where solder layers are divided into minimal units and the FEA solution and location information of each unit are known. Based on lifetime model, the failure area can be got and the fatigue failure process can be finished intelligently by cosimulation. The proposed method is accurate and intelligent enough in predicting the failure of solder layers which is more helpful for planned device management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助冷静的白菜采纳,获得10
刚刚
YJJ完成签到,获得积分10
刚刚
Mr杨完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
欢呼的时光完成签到 ,获得积分10
2秒前
章鱼哥完成签到,获得积分10
2秒前
3秒前
3秒前
和平星完成签到 ,获得积分10
4秒前
4秒前
Dr_Zhang完成签到,获得积分10
4秒前
咖喱酱发布了新的文献求助10
4秒前
maqin完成签到,获得积分10
5秒前
淡定汉堡发布了新的文献求助10
5秒前
5秒前
甲壳虫应助桀桀桀采纳,获得10
5秒前
蓝毗尼发布了新的文献求助10
5秒前
5秒前
后陡门的夏完成签到,获得积分10
6秒前
6秒前
feng发布了新的文献求助10
6秒前
billevans完成签到,获得积分10
6秒前
Lucas应助无敌剑士123采纳,获得10
6秒前
亚尔完成签到,获得积分10
6秒前
Musen发布了新的文献求助30
7秒前
大模型应助YJJ采纳,获得10
7秒前
irvine完成签到,获得积分0
7秒前
liu完成签到,获得积分10
7秒前
sw完成签到,获得积分10
7秒前
材料若饥完成签到,获得积分10
7秒前
领导范儿应助xtt采纳,获得10
8秒前
老老实实好好活着完成签到,获得积分10
8秒前
8秒前
和谐如之完成签到,获得积分10
8秒前
iNk应助felix采纳,获得10
9秒前
赫连立果完成签到,获得积分10
9秒前
俭朴依白完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Clinical Trials: A Methodologic Perspective 200
Essentials of Clinical Research 2nd Edition by Stephen P. Glasser 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695594
求助须知:如何正确求助?哪些是违规求助? 3247056
关于积分的说明 9853612
捐赠科研通 2958725
什么是DOI,文献DOI怎么找? 1622253
邀请新用户注册赠送积分活动 767867
科研通“疑难数据库(出版商)”最低求助积分说明 741293