已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate and robust registration of low overlapping point clouds

点云 计算机科学 稳健性(进化) 初始化 马尔可夫随机场 离群值 刚性变换 人工智能 判别式 算法 条件随机场 转化(遗传学) 模式识别(心理学) 图像分割 分割 生物化学 化学 基因 程序设计语言
作者
J. Yang,Mingyang Zhao,Yingrui Wu,Xiaohong Jia
出处
期刊:Computers & Graphics [Elsevier BV]
卷期号:118: 146-160 被引量:2
标识
DOI:10.1016/j.cag.2023.12.003
摘要

Point cloud registration has various applications within the computer-aided design (CAD) community, such as model reconstruction, retrieving, and analysis. Previous approaches mainly deal with the registration with a high overlapping hypothesis, while few existing methods explore the registration between low overlapping point clouds. However, the latter registration task is both challenging and essential, since the weak correspondence in point clouds usually leads to an inappropriate initialization, making the algorithm get stuck in a local minimum. To improve the performance against low overlapping scenarios, in this work, we develop a novel algorithm for accurate and robust registration of low overlapping point clouds using optimal transformation. The core of our method is the effective integration of geometric features with the probabilistic model hidden Markov random field. First, we determine and remove the outliers of the point clouds by modeling a hidden Markov random field based on a high dimensional feature distribution. Then, we derive a necessary and sufficient condition when the symmetric function is minimized and present a new curvature-aware symmetric function to make the point correspondence more discriminative. Finally, we integrate our curvature-aware symmetric function into a geometrically stable sampling framework, which effectively constrains unstable transformations. We verify the accuracy and robustness of our method on a wide variety of datasets, particularly on low overlapping range scanned point clouds. Results demonstrate that our proposed method attains better performance with higher accuracy and robustness compared to representative state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研小白采纳,获得10
刚刚
4秒前
5秒前
可爱牛青发布了新的文献求助10
5秒前
充电宝应助kccccccc采纳,获得10
7秒前
9秒前
9秒前
天天快乐应助幽默夜阑采纳,获得10
10秒前
10秒前
今后应助哦萨尔采纳,获得10
12秒前
12秒前
Hello应助小星小星采纳,获得10
12秒前
NexusExplorer应助朱诗佳采纳,获得10
12秒前
Amber完成签到,获得积分10
12秒前
FashionBoy应助养乐多采纳,获得10
13秒前
yuan发布了新的文献求助10
13秒前
14秒前
archiz发布了新的文献求助10
15秒前
ssc完成签到,获得积分10
15秒前
科研通AI5应助yz123采纳,获得10
16秒前
田鸿平完成签到,获得积分10
17秒前
nhscyhy完成签到,获得积分10
18秒前
18秒前
Skywalker发布了新的文献求助30
19秒前
19秒前
shjyang完成签到,获得积分0
23秒前
23秒前
小鱼完成签到 ,获得积分10
24秒前
123完成签到,获得积分20
24秒前
24秒前
蔓蔓要努力完成签到,获得积分10
24秒前
Aurora完成签到 ,获得积分10
25秒前
jackone完成签到 ,获得积分10
27秒前
哦萨尔发布了新的文献求助10
29秒前
30秒前
眯眯眼的龙猫完成签到,获得积分10
31秒前
科研通AI6应助ssc采纳,获得10
32秒前
安德鲁发布了新的文献求助10
34秒前
35秒前
JamesPei应助justin采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434