Accurate and robust registration of low overlapping point clouds

点云 计算机科学 稳健性(进化) 初始化 马尔可夫随机场 离群值 刚性变换 人工智能 判别式 算法 条件随机场 转化(遗传学) 模式识别(心理学) 图像分割 分割 基因 生物化学 化学 程序设计语言
作者
J. Yang,Mingyang Zhao,Yingrui Wu,Xiaohong Jia
出处
期刊:Computers & Graphics [Elsevier]
卷期号:118: 146-160 被引量:2
标识
DOI:10.1016/j.cag.2023.12.003
摘要

Point cloud registration has various applications within the computer-aided design (CAD) community, such as model reconstruction, retrieving, and analysis. Previous approaches mainly deal with the registration with a high overlapping hypothesis, while few existing methods explore the registration between low overlapping point clouds. However, the latter registration task is both challenging and essential, since the weak correspondence in point clouds usually leads to an inappropriate initialization, making the algorithm get stuck in a local minimum. To improve the performance against low overlapping scenarios, in this work, we develop a novel algorithm for accurate and robust registration of low overlapping point clouds using optimal transformation. The core of our method is the effective integration of geometric features with the probabilistic model hidden Markov random field. First, we determine and remove the outliers of the point clouds by modeling a hidden Markov random field based on a high dimensional feature distribution. Then, we derive a necessary and sufficient condition when the symmetric function is minimized and present a new curvature-aware symmetric function to make the point correspondence more discriminative. Finally, we integrate our curvature-aware symmetric function into a geometrically stable sampling framework, which effectively constrains unstable transformations. We verify the accuracy and robustness of our method on a wide variety of datasets, particularly on low overlapping range scanned point clouds. Results demonstrate that our proposed method attains better performance with higher accuracy and robustness compared to representative state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangching完成签到,获得积分10
1秒前
1秒前
csuxxm发布了新的文献求助10
2秒前
sunshine完成签到,获得积分10
3秒前
4秒前
4秒前
英姑应助dddsss采纳,获得10
5秒前
酷酷的匪发布了新的文献求助10
6秒前
英俊的铭应助Edison采纳,获得10
7秒前
石头发布了新的文献求助10
7秒前
fg发布了新的文献求助10
8秒前
8秒前
号行天下完成签到,获得积分20
9秒前
康康乃馨完成签到 ,获得积分10
12秒前
13秒前
14秒前
bluse033完成签到,获得积分10
15秒前
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
嗯哼应助科研通管家采纳,获得20
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得30
17秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得30
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
20秒前
dddsss发布了新的文献求助10
20秒前
Sugaryeah发布了新的文献求助10
22秒前
广隶发布了新的文献求助10
25秒前
YXF完成签到,获得积分20
28秒前
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2813001
关于积分的说明 7898208
捐赠科研通 2471974
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129