Accurate and robust registration of low overlapping point clouds

点云 计算机科学 稳健性(进化) 初始化 马尔可夫随机场 离群值 刚性变换 人工智能 判别式 算法 条件随机场 转化(遗传学) 模式识别(心理学) 图像分割 分割 生物化学 化学 基因 程序设计语言
作者
J. Yang,Mingyang Zhao,Yingrui Wu,Xiaohong Jia
出处
期刊:Computers & Graphics [Elsevier BV]
卷期号:118: 146-160 被引量:2
标识
DOI:10.1016/j.cag.2023.12.003
摘要

Point cloud registration has various applications within the computer-aided design (CAD) community, such as model reconstruction, retrieving, and analysis. Previous approaches mainly deal with the registration with a high overlapping hypothesis, while few existing methods explore the registration between low overlapping point clouds. However, the latter registration task is both challenging and essential, since the weak correspondence in point clouds usually leads to an inappropriate initialization, making the algorithm get stuck in a local minimum. To improve the performance against low overlapping scenarios, in this work, we develop a novel algorithm for accurate and robust registration of low overlapping point clouds using optimal transformation. The core of our method is the effective integration of geometric features with the probabilistic model hidden Markov random field. First, we determine and remove the outliers of the point clouds by modeling a hidden Markov random field based on a high dimensional feature distribution. Then, we derive a necessary and sufficient condition when the symmetric function is minimized and present a new curvature-aware symmetric function to make the point correspondence more discriminative. Finally, we integrate our curvature-aware symmetric function into a geometrically stable sampling framework, which effectively constrains unstable transformations. We verify the accuracy and robustness of our method on a wide variety of datasets, particularly on low overlapping range scanned point clouds. Results demonstrate that our proposed method attains better performance with higher accuracy and robustness compared to representative state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的无剑完成签到,获得积分20
刚刚
刚刚
1秒前
abcd_1067完成签到,获得积分10
1秒前
Xenia完成签到,获得积分10
1秒前
mokosk完成签到,获得积分10
1秒前
充电宝应助李聪采纳,获得10
2秒前
我没那么郝完成签到,获得积分10
3秒前
科研通AI2S应助七仔采纳,获得10
3秒前
852应助笑语盈盈采纳,获得10
4秒前
4秒前
4秒前
Hongtao完成签到 ,获得积分10
5秒前
奋斗映寒发布了新的文献求助10
5秒前
深情安青应助阳光的无剑采纳,获得30
6秒前
量子星尘发布了新的文献求助10
6秒前
xiaolang2004发布了新的文献求助10
6秒前
Yuki完成签到,获得积分10
7秒前
7秒前
8秒前
华仔应助deniroming采纳,获得10
8秒前
9秒前
科研通AI2S应助gy采纳,获得10
9秒前
10秒前
冰墩墩完成签到,获得积分10
10秒前
舒适的淇发布了新的文献求助10
10秒前
11秒前
kang发布了新的文献求助10
11秒前
11秒前
12秒前
忐忑的盼易完成签到,获得积分20
13秒前
Akim应助李婧薇采纳,获得10
14秒前
14秒前
超级完成签到,获得积分10
15秒前
神勇语堂发布了新的文献求助10
15秒前
仁爱绝义完成签到,获得积分10
16秒前
笑语盈盈发布了新的文献求助10
17秒前
17秒前
早春发布了新的文献求助10
17秒前
zhouyan完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958357
求助须知:如何正确求助?哪些是违规求助? 3504636
关于积分的说明 11119121
捐赠科研通 3235826
什么是DOI,文献DOI怎么找? 1788534
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802600