亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Efficient CNN Acceleration Through Mixed Precision Quantization: A Comprehensive Methodology

计算机科学 现场可编程门阵列 卷积神经网络 量化(信号处理) 计算机工程 硬件加速 边缘设备 算法 计算机硬件 并行计算 计算机体系结构 嵌入式系统 人工智能 云计算 操作系统
作者
Yizhi He,Wenlong Liu,Muhammad Tahir,Zhao Li,Shaoshuang Zhang,Hussain Bux Amur
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:14 (12)
标识
DOI:10.14569/ijacsa.2023.0141282
摘要

To overcome challenges associated with deploying Convolutional Neural Networks (CNNs) on edge computing devices with limited memory and computing resources, we propose a mixed-precision CNN calculation method on a Field Programmable Gate Array (FPGA). This approach involves a collaborative design encompassing both software and hardware aspects. Initially, we devised a CNN quantization method tailored for the fixed-point operation characteristics of FPGA, addressing the computational challenges posed by floating-point parameters. We introduce a bit-width strategy search algorithm that assigns bit-widths to each layer based on CNN loss variation induced by quantization. Through retraining, this strategy mitigates the degradation in CNN inference accuracy. For FPGA acceleration design, we employ a flow processing architecture with multiple Processing Elements (PEs) to support mixed-precision CNNs. Our approach incorporates a folding design method to implement shared PEs between layers, significantly reducing FPGA resource usage. Furthermore, we designed a data reading method, incorporating a register set buffer between memory and processing elements to alleviate issues related to mismatched data reading and computing speeds. Our implementation of the mixed-precision ResNet20 model on the Kintex-7 Eco R2 development board achieves an inference accuracy of 91.68% and a computing speed 4.27 times faster than the Central Processing Unit (CPU) on the CIFAR-10 dataset, with an accuracy drop of only 1.21%. Compared to a unified 16-bit FPGA accelerator design method, our proposed approach demonstrates an 89-fold increase in computing speed while maintaining similar accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Begonia完成签到 ,获得积分10
24秒前
orixero应助StayGolDay采纳,获得10
38秒前
43秒前
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
StayGolDay发布了新的文献求助10
1分钟前
1分钟前
2分钟前
可爱的函函应助StayGolDay采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
StayGolDay发布了新的文献求助10
3分钟前
3分钟前
IlIIlIlIIIllI应助StayGolDay采纳,获得10
4分钟前
丘比特应助gc采纳,获得10
4分钟前
chiyudoubao发布了新的文献求助10
4分钟前
shame完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
小蘑菇应助西呱呱采纳,获得10
5分钟前
gc发布了新的文献求助10
5分钟前
藤椒辣鱼应助一路向北采纳,获得10
5分钟前
6分钟前
JoySue发布了新的文献求助10
6分钟前
6分钟前
藤椒辣鱼应助JoySue采纳,获得10
6分钟前
JoySue完成签到,获得积分20
6分钟前
TXZ06完成签到,获得积分10
7分钟前
7分钟前
8分钟前
西呱呱发布了新的文献求助10
8分钟前
藤椒辣鱼应助zhuzhu采纳,获得10
8分钟前
9分钟前
9分钟前
sam发布了新的文献求助10
9分钟前
小二郎应助sam采纳,获得10
9分钟前
9分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440093
求助须知:如何正确求助?哪些是违规求助? 3036506
关于积分的说明 8963970
捐赠科研通 2724691
什么是DOI,文献DOI怎么找? 1494765
科研通“疑难数据库(出版商)”最低求助积分说明 690940
邀请新用户注册赠送积分活动 687419