亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Efficient CNN Acceleration Through Mixed Precision Quantization: A Comprehensive Methodology

计算机科学 现场可编程门阵列 卷积神经网络 量化(信号处理) 计算机工程 硬件加速 边缘设备 算法 计算机硬件 并行计算 计算机体系结构 嵌入式系统 人工智能 云计算 操作系统
作者
Yizhi He,Wenlong Liu,Muhammad Tahir,Zhao Li,Shaoshuang Zhang,Hussain Bux Amur
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:14 (12)
标识
DOI:10.14569/ijacsa.2023.0141282
摘要

To overcome challenges associated with deploying Convolutional Neural Networks (CNNs) on edge computing devices with limited memory and computing resources, we propose a mixed-precision CNN calculation method on a Field Programmable Gate Array (FPGA). This approach involves a collaborative design encompassing both software and hardware aspects. Initially, we devised a CNN quantization method tailored for the fixed-point operation characteristics of FPGA, addressing the computational challenges posed by floating-point parameters. We introduce a bit-width strategy search algorithm that assigns bit-widths to each layer based on CNN loss variation induced by quantization. Through retraining, this strategy mitigates the degradation in CNN inference accuracy. For FPGA acceleration design, we employ a flow processing architecture with multiple Processing Elements (PEs) to support mixed-precision CNNs. Our approach incorporates a folding design method to implement shared PEs between layers, significantly reducing FPGA resource usage. Furthermore, we designed a data reading method, incorporating a register set buffer between memory and processing elements to alleviate issues related to mismatched data reading and computing speeds. Our implementation of the mixed-precision ResNet20 model on the Kintex-7 Eco R2 development board achieves an inference accuracy of 91.68% and a computing speed 4.27 times faster than the Central Processing Unit (CPU) on the CIFAR-10 dataset, with an accuracy drop of only 1.21%. Compared to a unified 16-bit FPGA accelerator design method, our proposed approach demonstrates an 89-fold increase in computing speed while maintaining similar accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助聪明怜阳采纳,获得10
4秒前
7秒前
10秒前
15秒前
James发布了新的文献求助10
19秒前
Pluto发布了新的文献求助10
23秒前
27秒前
彭婉怡yyyy完成签到,获得积分10
32秒前
CodeCraft应助LLYNL采纳,获得10
33秒前
文静听南完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
38秒前
万能图书馆应助刘海清采纳,获得30
38秒前
44秒前
49秒前
56秒前
小白菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Ldq发布了新的文献求助10
1分钟前
搜集达人应助个性的亦云采纳,获得10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
1分钟前
刘海清发布了新的文献求助30
1分钟前
susu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482258
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388800
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432375