Research on Efficient CNN Acceleration Through Mixed Precision Quantization: A Comprehensive Methodology

计算机科学 现场可编程门阵列 卷积神经网络 量化(信号处理) 计算机工程 硬件加速 边缘设备 算法 计算机硬件 并行计算 计算机体系结构 嵌入式系统 人工智能 云计算 操作系统
作者
Yizhi He,Wenlong Liu,Muhammad Tahir,Zhao Li,Shaoshuang Zhang,Hussain Bux Amur
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:14 (12)
标识
DOI:10.14569/ijacsa.2023.0141282
摘要

To overcome challenges associated with deploying Convolutional Neural Networks (CNNs) on edge computing devices with limited memory and computing resources, we propose a mixed-precision CNN calculation method on a Field Programmable Gate Array (FPGA). This approach involves a collaborative design encompassing both software and hardware aspects. Initially, we devised a CNN quantization method tailored for the fixed-point operation characteristics of FPGA, addressing the computational challenges posed by floating-point parameters. We introduce a bit-width strategy search algorithm that assigns bit-widths to each layer based on CNN loss variation induced by quantization. Through retraining, this strategy mitigates the degradation in CNN inference accuracy. For FPGA acceleration design, we employ a flow processing architecture with multiple Processing Elements (PEs) to support mixed-precision CNNs. Our approach incorporates a folding design method to implement shared PEs between layers, significantly reducing FPGA resource usage. Furthermore, we designed a data reading method, incorporating a register set buffer between memory and processing elements to alleviate issues related to mismatched data reading and computing speeds. Our implementation of the mixed-precision ResNet20 model on the Kintex-7 Eco R2 development board achieves an inference accuracy of 91.68% and a computing speed 4.27 times faster than the Central Processing Unit (CPU) on the CIFAR-10 dataset, with an accuracy drop of only 1.21%. Compared to a unified 16-bit FPGA accelerator design method, our proposed approach demonstrates an 89-fold increase in computing speed while maintaining similar accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu关注了科研通微信公众号
刚刚
Tsuns完成签到 ,获得积分10
1秒前
YamDaamCaa应助未曾提起采纳,获得30
1秒前
Hong1978发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助hcx采纳,获得50
3秒前
YamDaamCaa应助科研鸟采纳,获得30
4秒前
9秒前
候佳祥完成签到,获得积分10
11秒前
12秒前
文艺映之发布了新的文献求助10
12秒前
李健应助苗条的老九采纳,获得10
12秒前
wy.he应助糟糕的铁锤采纳,获得30
12秒前
14秒前
请叫我风吹麦浪给物理幽灵的求助进行了留言
14秒前
Ava应助木木采纳,获得10
15秒前
fengzi151完成签到,获得积分10
15秒前
Jay完成签到,获得积分10
16秒前
乐乐应助坦率的秀发采纳,获得10
17秒前
statsli完成签到,获得积分10
18秒前
19秒前
内向思山完成签到,获得积分10
19秒前
传奇3应助喵叽采纳,获得10
19秒前
20秒前
21秒前
22秒前
22秒前
听风者发布了新的文献求助10
22秒前
22秒前
Akim应助欣喜的成败采纳,获得10
23秒前
贾明灵完成签到 ,获得积分10
23秒前
芍药完成签到 ,获得积分10
24秒前
24秒前
24秒前
乖乖隆地洞完成签到,获得积分10
24秒前
25秒前
小马甲应助嗨好采纳,获得10
26秒前
26秒前
聆琳完成签到 ,获得积分10
26秒前
xu发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421