Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments

计算机科学 人工智能 判别式 全球定位系统 任务(项目管理) 公制(单位) 基线(sea) 计算机视觉 卫星 采样(信号处理) 实时计算 机器学习 电信 滤波器(信号处理) 海洋学 地质学 工程类 航空航天工程 经济 管理 运营管理
作者
Ming Dai,Enhui Zheng,Zhenhua Feng,Lei Qi,Jiedong Zhuang,Wankou Yang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 493-508 被引量:8
标识
DOI:10.1109/tip.2023.3346279
摘要

Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning. However, due to limited satellite coverage or communication disruptions, UAVs may lose signals for positioning. In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs. However, most of the existing datasets are developed for the geo-localization task of the objects captured by UAVs, rather than UAV self-positioning. Furthermore, the existing UAV datasets apply discrete sampling to synthetic data, such as Google Maps, neglecting the crucial aspects of dense sampling and the uncertainties commonly experienced in practical scenarios. To address these issues, this paper presents a new dataset, DenseUAV, that is the first publicly available dataset tailored for the UAV self-positioning task. DenseUAV adopts dense sampling on UAV images obtained in low-altitude urban areas. In total, over 27K UAV- and satellite-view images of 14 university campuses are collected and annotated. In terms of methodology, we first verify the superiority of Transformers over CNNs for the proposed task. Then we incorporate metric learning into representation learning to enhance the model's discriminative capacity and to reduce the modality discrepancy. Besides, to facilitate joint learning from both the satellite and UAV views, we introduce a mutually supervised learning approach. Last, we enhance the Recall@K metric and introduce a new measurement, SDM@K, to evaluate both the retrieval and localization performance for the proposed task. As a result, the proposed baseline method achieves a remarkable Recall@1 score of 83.01% and an SDM@1 score of 86.50% on DenseUAV. The dataset and code have been made publicly available on https://github.com/Dmmm1997/DenseUAV .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
non发布了新的文献求助10
刚刚
literary完成签到,获得积分10
2秒前
2秒前
慕青应助proteinpurify采纳,获得10
3秒前
3秒前
XZY完成签到 ,获得积分10
3秒前
5秒前
去你家玩好吗完成签到,获得积分10
5秒前
传奇3应助方董采纳,获得10
6秒前
7秒前
10秒前
physicalproblem应助欣喜沛芹采纳,获得10
11秒前
shi hui完成签到 ,获得积分10
11秒前
善学以致用应助qiuqiu采纳,获得10
12秒前
Asahi发布了新的文献求助10
12秒前
秦时明月完成签到,获得积分10
14秒前
literary发布了新的文献求助10
14秒前
彭于晏应助non采纳,获得10
14秒前
15秒前
风雨完成签到,获得积分10
15秒前
17秒前
17秒前
yxy完成签到,获得积分20
18秒前
18秒前
qinqiny完成签到 ,获得积分10
18秒前
18秒前
19秒前
曲阁完成签到 ,获得积分10
20秒前
典雅的俊驰应助永恒亲吻采纳,获得10
20秒前
乐观寄真发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
yuzhi完成签到,获得积分10
23秒前
proteinpurify发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
桐桐应助maidoy采纳,获得10
26秒前
方董发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301723
求助须知:如何正确求助?哪些是违规求助? 2936289
关于积分的说明 8477167
捐赠科研通 2610018
什么是DOI,文献DOI怎么找? 1424990
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646342