亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale TransUnet Combined with CBAM for Nuclear Image Segmentation

增采样 像素 计算机科学 编码器 人工智能 分割 膨胀(度量空间) 计算机视觉 卷积(计算机科学) 特征提取 图像(数学) 特征(语言学) 模式识别(心理学) 数学 人工神经网络 哲学 组合数学 操作系统 语言学
作者
Lijun Jiao,Yanbei Liu,Yaning Gu,Jun Wu,Fang Zhang
标识
DOI:10.1145/3633637.3633699
摘要

The nucleus carries a wealth of genetic information that controls and regulates the characteristics and functions of cells. Its morphology and distribution are highly crucial for the differentiation and grading of tumors. However, with the widespread adoption of medical imaging technology, the task of handling massive cell images has become challenging and time-consuming, demanding specialized knowledge and expertise from medical professionals. The traditional nuclear image segmentation methods require expensive time consuming and exhibit limited adaptability to different environments. To address these problems, we propose a novel multi-scale TransUnet combined with Convolutional Block Attention Module (CBAM) method for nuclear image segmentation. Firstly, in the downsampling phase of the encoder, we introduce dilated convolution units with varying dilation rates. This enables the model to integrate multi-scale feature information, thereby expanding the receptive field during downsampling to extract cell nucleus information more comprehensively. In addition, to enhance the ability of target feature extraction, CBAM is added to the up-sampling of the decoder to sequentially acquire inter-channel dependencies and spatial pixel-level relationships. The experimental results show that the Dice coefficient of our model on the MoNuSeg dataset reaches 86.3%, and the crossover ratio of IoU reaches 84.2%. Compared with the second-best models (TransUnet), the performance of our model is improved by 1.22% and 0.45% in terms of IoU and Dice similarity coefficient, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助凛玖niro采纳,获得10
1秒前
13秒前
凛玖niro发布了新的文献求助10
19秒前
霖槿完成签到,获得积分10
20秒前
23秒前
十八完成签到 ,获得积分10
32秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
liuliu发布了新的文献求助30
1分钟前
1分钟前
烟花应助Li采纳,获得10
1分钟前
liuliu完成签到,获得积分20
2分钟前
2分钟前
2分钟前
ataybabdallah完成签到,获得积分10
2分钟前
2分钟前
2分钟前
开朗大雁完成签到 ,获得积分10
2分钟前
上官若男应助Marshall采纳,获得10
3分钟前
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
kdjm688完成签到,获得积分10
3分钟前
彭于晏应助蓝色牛马采纳,获得10
3分钟前
3分钟前
蓝色牛马发布了新的文献求助10
4分钟前
4分钟前
4分钟前
9527完成签到,获得积分10
4分钟前
Li发布了新的文献求助10
4分钟前
优美芸发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788626
求助须知:如何正确求助?哪些是违规求助? 5709683
关于积分的说明 15473737
捐赠科研通 4916631
什么是DOI,文献DOI怎么找? 2646497
邀请新用户注册赠送积分活动 1594168
关于科研通互助平台的介绍 1548580