Analysing the spatiotemporal variation and influencing factors of Lake Chaohu's CDOM over the past 40 years using machine learning

有色溶解有机物 环境科学 生物地球化学循环 溶解有机碳 水质 富营养化 均方误差 碳循环 气候学 海洋学 生态学 数学 营养物 统计 地质学 生态系统 浮游植物 生物
作者
Zijie Zhang,Han Zhang,Y. Jin,Hongwei Guo,Shang Tian,Jinhui Jeanne Huang‬‬‬‬,Xiaotong Zhu
出处
期刊:Ecohydrology [Wiley]
卷期号:17 (3)
标识
DOI:10.1002/eco.2639
摘要

Abstract Chromophoric dissolved organic matter (CDOM) in aquatic environments is an important component of the biogeochemical cycle and carbon cycle. The aim of this study is to investigate the long‐term changes in CDOM in shallow and eutrophic Chaohu Lake, as well as its relationship with climate, environment and social factors. Using long time series Landsat image data and machine learning technology, the spatiotemporal evolution of Chaohu CDOM since 1987 was reconstructed. A total of 180 samples were collected, which were divided into three parts based on regional and hydrological characteristics. The results show that the water quality in different regions were significantly different, and TN may be the key factor driving the change of CDOM in Chaohu Lake. Machine learning algorithms including random forest (RF), support vector regression (SVR), neural network (NN), multimodal deep learning (MDL) model and Extreme Gradient Boosting (XGBoost) were used, among which XGBoost model performed best ( R 2 = 0.955, mean absolute error [MAE] = 0.024 mg/L, root mean square error [RMSE] = 0.036 mg/L, bias = 1.005) and was used for CDOM spatiotemporal variation retrieval. The change of CDOM was seasonal, highest in August (0.67 m −1 ) and lowest in December (0.48 m −1 ), and the western lake is the main source of CDOM. Annual variability of the CDOM indicates that it began to decline after the completion of water pollution control in 2000. Temperature changes were closely related to CDOM ( P < 0.01) and agricultural non‐point source pollution plays an important role in Chaohu Lake. This study will provide feasible methods and scientific basis for the long‐term remote sensing supervision of CDOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名老大应助斯文裘采纳,获得10
1秒前
1秒前
今后应助于归采纳,获得10
2秒前
guaishou发布了新的文献求助10
2秒前
2秒前
LIKO完成签到,获得积分10
4秒前
4秒前
想退休的猕猴桃完成签到,获得积分10
4秒前
5秒前
直率海豚发布了新的文献求助30
5秒前
NeuroWhite完成签到,获得积分10
6秒前
野风车发布了新的文献求助10
6秒前
6秒前
赵欣完成签到,获得积分10
6秒前
Orange应助宋亚佩采纳,获得10
8秒前
hd完成签到,获得积分10
8秒前
8秒前
9秒前
轻松黑裤发布了新的文献求助10
9秒前
ixueyi发布了新的文献求助10
9秒前
打打应助LiuXiaoJie采纳,获得10
10秒前
赵欣发布了新的文献求助10
11秒前
12秒前
陈金致应助hk1900采纳,获得10
12秒前
可爱多完成签到,获得积分20
12秒前
12秒前
求助NE发布了新的文献求助20
13秒前
13秒前
14秒前
自信乐菱发布了新的文献求助10
14秒前
14秒前
15秒前
可爱多发布了新的文献求助10
15秒前
情怀应助人生有味是清欢采纳,获得10
15秒前
15秒前
15秒前
瘦瘦斩发布了新的文献求助10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
模糊中正应助科研通管家采纳,获得30
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
CLSI M100-Ed35 2025 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3389089
求助须知:如何正确求助?哪些是违规求助? 3001372
关于积分的说明 8797002
捐赠科研通 2687736
什么是DOI,文献DOI怎么找? 1472146
科研通“疑难数据库(出版商)”最低求助积分说明 680849
邀请新用户注册赠送积分活动 673533