Emotion Recognition in Conversation Based on a Dynamic Complementary Graph Convolutional Network

话语 对话 判决 自然语言处理 图形 计算机科学 冗余(工程) 卷积神经网络 交互信息 语音识别 人工智能 理论计算机科学 语言学 哲学 统计 数学 操作系统
作者
Zhenyu Yang,Xiaoyang Li,Yuhu Cheng,Tong Zhang,Xuesong Wang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1567-1579 被引量:2
标识
DOI:10.1109/taffc.2024.3360979
摘要

Emotion recognition in conversation (ERC) is a widely used technology in both affective dialogue bots and dialogue recommendation scenarios, where motivating a system to correctly recognize human emotions is crucial. Uncovering as much contextual information as possible with a limited amount of dialogue information is essential for eventually identifying the correct emotion of each sentence. The integration of contextual information using the existing approaches often results in inadequate access to information or information redundancy. Deeply integrating the different knowledge behind utterances is also difficult. Therefore, to address these problems, we propose a dynamic complementary graph convolutional network (DCGCN) for conversational emotion recognition. Our approach uses commonsense knowledge to complement the contextual information contained in utterances and enrich the extracted conversation information. We creatively propose the concept of utterance density to prevent redundancy and the loss of utterance information in context-dependent contextual information modeling cases. An utterance dependency structure is dynamically determined by the utterance density, and the contextual information is fully integrated into each sentence representation. We evaluate our proposed model in extensive experiments conducted on four public benchmark datasets that are commonly used for ERC. The results demonstrate the effectiveness of the DCGCN, which achieves competitive results in terms of well-known evaluation metrics. Our code is available at https://github.com/Tars-is-a-robot/Conversational-emotion-recognition.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hengy发布了新的文献求助10
刚刚
杳鸢应助Xenia采纳,获得10
1秒前
kekekelili完成签到,获得积分10
2秒前
2秒前
zhonghbush发布了新的文献求助10
3秒前
reck发布了新的文献求助10
3秒前
3秒前
3秒前
kimcandy完成签到,获得积分10
3秒前
华仔应助任品贤采纳,获得10
4秒前
无花果应助急雪回风采纳,获得10
4秒前
6秒前
曾经的灵完成签到,获得积分20
6秒前
bkagyin应助小宇采纳,获得10
6秒前
许之北完成签到 ,获得积分10
6秒前
6秒前
船舵发布了新的文献求助10
6秒前
gaos完成签到,获得积分10
7秒前
念念发布了新的文献求助10
7秒前
An_mie完成签到,获得积分10
7秒前
7秒前
7秒前
Arabella完成签到,获得积分10
8秒前
HEIKU应助追梦人采纳,获得10
8秒前
8秒前
小T儿发布了新的文献求助10
8秒前
852应助woxiangbiye采纳,获得10
8秒前
飞羽完成签到,获得积分10
9秒前
Owen应助cherry采纳,获得10
9秒前
坚定的老六完成签到,获得积分10
9秒前
协和_子鱼完成签到,获得积分0
9秒前
10秒前
Hyde完成签到,获得积分10
11秒前
小南孩完成签到,获得积分10
11秒前
11秒前
12秒前
研友_VZG7GZ应助keyancui采纳,获得10
12秒前
康康完成签到 ,获得积分10
13秒前
英姑应助毕业就好采纳,获得10
13秒前
虚心的迎荷完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672