Emotion Recognition in Conversation Based on a Dynamic Complementary Graph Convolutional Network

话语 对话 判决 自然语言处理 图形 计算机科学 冗余(工程) 卷积神经网络 交互信息 语音识别 人工智能 理论计算机科学 语言学 操作系统 哲学 统计 数学
作者
Zhenyu Yang,Xiaoyang Li,Yuhu Cheng,Tong Zhang,Xuesong Wang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1567-1579 被引量:5
标识
DOI:10.1109/taffc.2024.3360979
摘要

Emotion recognition in conversation (ERC) is a widely used technology in both affective dialogue bots and dialogue recommendation scenarios, where motivating a system to correctly recognize human emotions is crucial. Uncovering as much contextual information as possible with a limited amount of dialogue information is essential for eventually identifying the correct emotion of each sentence. The integration of contextual information using the existing approaches often results in inadequate access to information or information redundancy. Deeply integrating the different knowledge behind utterances is also difficult. Therefore, to address these problems, we propose a dynamic complementary graph convolutional network (DCGCN) for conversational emotion recognition. Our approach uses commonsense knowledge to complement the contextual information contained in utterances and enrich the extracted conversation information. We creatively propose the concept of utterance density to prevent redundancy and the loss of utterance information in context-dependent contextual information modeling cases. An utterance dependency structure is dynamically determined by the utterance density, and the contextual information is fully integrated into each sentence representation. We evaluate our proposed model in extensive experiments conducted on four public benchmark datasets that are commonly used for ERC. The results demonstrate the effectiveness of the DCGCN, which achieves competitive results in terms of well-known evaluation metrics. Our code is available at https://github.com/Tars-is-a-robot/Conversational-emotion-recognition.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初次见面完成签到,获得积分10
1秒前
3秒前
蝴蝶变成毛毛虫完成签到,获得积分10
4秒前
yulinhai完成签到,获得积分10
4秒前
5秒前
maidida完成签到,获得积分10
5秒前
shell发布了新的文献求助80
5秒前
量子星尘发布了新的文献求助20
6秒前
gan完成签到,获得积分10
6秒前
wzf123456发布了新的文献求助10
8秒前
小月亮完成签到,获得积分10
8秒前
不以发布了新的文献求助30
9秒前
Liuuhhua完成签到,获得积分10
10秒前
11秒前
13秒前
言非离应助f1sh采纳,获得20
14秒前
正好完成签到,获得积分10
14秒前
青年才俊发布了新的文献求助10
15秒前
科研通AI6应助王挪采纳,获得10
15秒前
大模型应助毛头侠采纳,获得10
16秒前
开朗穆发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
传奇3应助不以采纳,获得10
19秒前
青年才俊发布了新的文献求助10
21秒前
Murm完成签到 ,获得积分20
21秒前
moonlightblu_完成签到,获得积分10
21秒前
科研通AI5应助外向的花花采纳,获得10
21秒前
22秒前
wzf123456完成签到,获得积分10
23秒前
无头绪完成签到,获得积分10
23秒前
开朗穆完成签到,获得积分10
24秒前
林洁佳发布了新的文献求助10
25秒前
Tong发布了新的文献求助30
25秒前
荆扉发布了新的文献求助10
26秒前
少年游完成签到,获得积分10
26秒前
汶溢完成签到,获得积分10
26秒前
科研通AI5应助微笑的水桃采纳,获得10
28秒前
小洋一生完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941339
求助须知:如何正确求助?哪些是违规求助? 4207390
关于积分的说明 13077624
捐赠科研通 3986257
什么是DOI,文献DOI怎么找? 2182529
邀请新用户注册赠送积分活动 1198125
关于科研通互助平台的介绍 1110387