Emotion Recognition in Conversation Based on a Dynamic Complementary Graph Convolutional Network

对话 情绪识别 图形 计算机科学 卷积神经网络 情感计算 语音识别 人工智能 人机交互 心理学 理论计算机科学 沟通
作者
Zhenyu Yang,Xiaoyang Li,Yuhu Cheng,Tong Zhang,Xuesong Wang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/taffc.2024.3360979
摘要

Emotion recognition in conversation (ERC) is a widely used technology in both affective dialogue bots and dialogue recommendation scenarios, where motivating a system to correctly recognize human emotions is crucial. Uncovering as much contextual information as possible with a limited amount of dialogue information is essential for eventually identifying the correct emotion of each sentence. The integration of contextual information using the existing approaches often results in inadequate access to information or information redundancy. Deeply integrating the different knowledge behind utterances is also difficult. Therefore, to address these problems, we propose a dynamic complementary graph convolutional network (DCGCN) for conversational emotion recognition. Our approach uses commonsense knowledge to complement the contextual information contained in utterances and enrich the extracted conversation information. We creatively propose the concept of utterance density to prevent redundancy and the loss of utterance information in context-dependent contextual information modeling cases. An utterance dependency structure is dynamically determined by the utterance density, and the contextual information is fully integrated into each sentence representation. We evaluate our proposed model in extensive experiments conducted on four public benchmark datasets that are commonly used for ERC. The results demonstrate the effectiveness of the DCGCN, which achieves competitive results in terms of well-known evaluation metrics. Our code is available at https://github.com/Tars-is-a-robot/Conversational-emotion-recognition.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺其自然完成签到 ,获得积分10
刚刚
没得完成签到 ,获得积分10
1秒前
书芹完成签到,获得积分10
1秒前
1秒前
舒心的秋荷完成签到 ,获得积分10
2秒前
bkagyin应助zhang005on采纳,获得10
2秒前
zqz完成签到,获得积分20
2秒前
上官若男应助清爽灰狼采纳,获得10
3秒前
大模型应助清璃采纳,获得10
3秒前
3秒前
米饭多加水完成签到 ,获得积分10
4秒前
4秒前
易安发布了新的文献求助10
4秒前
lx完成签到,获得积分10
4秒前
Akim应助奋斗雁枫采纳,获得10
5秒前
思琪HMH发布了新的文献求助30
5秒前
羔羊完成签到 ,获得积分10
5秒前
Qianyun应助网安小趴菜采纳,获得10
5秒前
6秒前
脑洞疼应助风车采纳,获得10
8秒前
lx发布了新的文献求助10
8秒前
CodeCraft应助称心小兔子采纳,获得10
8秒前
ALTA完成签到 ,获得积分10
9秒前
9秒前
学霸宇大王完成签到 ,获得积分10
9秒前
小渊同学完成签到,获得积分10
10秒前
您好完成签到,获得积分20
10秒前
zlzlzte完成签到 ,获得积分10
10秒前
易安完成签到,获得积分10
10秒前
王灿灿举报月半求助涉嫌违规
12秒前
SciGPT应助GK采纳,获得10
12秒前
12秒前
闫奥发布了新的文献求助10
12秒前
13秒前
14秒前
XYWang发布了新的文献求助10
15秒前
15秒前
small应助花开富贵采纳,获得20
16秒前
清爽灰狼发布了新的文献求助10
16秒前
它山凡溪寺完成签到 ,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892